DOI QR코드

DOI QR Code

Dynamic Correction of DES Model Constant for the Advanced Prediction of Supersonic Base Flow

초음속 기저유동의 우수한 예측을 위한 DES 모델상수의 동적 보정

  • 신재렬 (부산대학교 항공우주공학과 대학원) ;
  • 최정열 (부산대학교 항공우주공학과)
  • Received : 2009.12.14
  • Accepted : 2010.01.25
  • Published : 2010.02.01

Abstract

The DES analysis of strong compressibility flow, LES mode is intentionally performed in boundary layer with the conventional empirical constant $C_{DES}$ value of 0.65. In this study, an expression is suggested to determine the $C_{DES}$ value dynamically by using a distribution function of the ratio of turbulence length scale and wall distance which is used in S-A DDES model for RANS mode protection. The application of the dynamic $C_{DES}$ presents better prediction than previous results those used constant but different $C_{DES}$ values.

강한 압축성을 갖는 유동의 DES 해석에서, 일반적인 경험상수 $C_{DES}$ 값 0.65를 사용할 경우 경계층 내에서 인위적으로 LES 모드로 수행된다. 본 연구에서는 S-A DES 모델에서 RANS 모드 보호를 위하여 사용되는 난류 길이와 벽거리 비의 분포 함수를 이용한 $C_{DES}$의 동적 결정 방법을 제시하였다. 동적 $C_{DES}$ 결정식을 초음속 기저 유동장에 적용한 결과 다른 모델 상수를 사용한 기존의 연구 결과에 비하여 우수한 예측을 보여주었다.

Keywords

References

  1. Spalart, P.R., Jou, W.-H., Strelets, M., Allmaras, S.R., "Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach", Proceedings of the first AFOSR international conference on DNS/LES, 1997.
  2. Speziale, C.G., “Turbulence modelling for time-dependent RANS and VLES: A review”, AIAA Journal, Vol. 36, 1998, pp. 173-184. https://doi.org/10.2514/2.7499
  3. Spalart, P.R., Allmaras, S.R., “A One Equation Turbulence Model for Aerodynamic Flows”, AIAA Paper No. 92-0439, 1992.
  4. Strelets, M.K., “Detached Eddy Simulation of Massively Separated Flows”, AIAA Paper No. 2001-0879, 2001.
  5. Menter, F.R., “Zonal Two-equation k-w Turbulence Model for Aerodynamic Flows”, AIAA Paper No. 1993-2906, 1993.
  6. Nichols, R.H., Nelson, C.C., “Application of hybrid RANS/LES turbulence models”, AIAA Paper No. 2003 - 0083, 2003.
  7. Zhong, B., Tucker, P.G., “k-1 based hybrid LES/RANS approach and its application to heat transfer simulation”, Inter. J. Numerical Methods in Fluids, Vol. 46, pp. 983-1005, 2004. https://doi.org/10.1002/fld.782
  8. Wolfshtein, M., “The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient”, Int. J. Heat and Mass Transf., Vol. 12, 1969, pp. 301-31. https://doi.org/10.1016/0017-9310(69)90012-X
  9. Yoshizawa, A., “Bridging between eddy-viscosity-type and second order models using a two-scale turbulence theory”, Phy. Rev. E, Vol. 48, No. 1, 1993, pp. 273-281. https://doi.org/10.1103/PhysRevE.48.273
  10. Fureby, C., “Large eddy simulation of rearward-facing step flow”, AIAA Journal, Vol. 37, 1999, pp. 1401-1411. https://doi.org/10.2514/2.639
  11. Abe, K., “hybrid LES/RANS approach using an anisotropy resolving algebraic turbulence model”, Inter. J. Heat and Fluid Flow, Vol. 26, 2005, pp. 204-222. https://doi.org/10.1016/j.ijheatfluidflow.2004.08.009
  12. Temmerman, L, Hadziabdic, M., Leschziner, M.A, Hanjalic, K., Abe, K., “A hybrid two-layer URANS.LES approach for large eddy simulation at high Reynolds numbers”, Inter. J. Heat and Fluid Flow, Vol. 26, 2005, pp. 173-190. https://doi.org/10.1016/j.ijheatfluidflow.2004.07.006
  13. Abe, K., Kondoh, T., Nagano, Y., “A new turbulence model for predicting fluid flow and heat transfer in separating and re-attaching flows - I, Flow field calculations”, Int. J. Heat and Mass Transfer, Vol. 37, 1994, pp. 139-151. https://doi.org/10.1016/0017-9310(94)90168-6
  14. Menter, F.R., Kuntz, M., and Langtry, R., “Ten Years of Industrial Experience with the SST Turbulence Model”, Turbulence, Heat and Mass Transfer 4, Edited by Hanjalic, K., Nagano, Y. and Tummers, M., Begell House, 2003.
  15. Spalart, P.R., Deck, S., Shur, M.L., Squires, K. D., Strelets, M.K., and Travin, A.K., “A new version of detached-eddy simulation, resistant to ambiguous grid densities”, Theor. Comput. Fluid Dyn., Vol. 20, 2006, pp. 181-195. https://doi.org/10.1007/s00162-006-0015-0
  16. Comte-Bellot, G., and Corrsin, S., “Simple Eulerian time correlation of full- and narrow-band velocity signals in grid generated 'isotropic' turbulence”, J. Fluid Mech., Vol.48, 1971, pp. 273-337. https://doi.org/10.1017/S0022112071001599
  17. Shur, M., Spalart, P.R., Strelets, M. and Travin, A., “Detached-eddy simulation of an airfoil at high angle of attack”, 4th International Symposium on Engineering Turbulence Modelling and Measurements, Elsevier Science, Amsterdam, 1999, pp. 669-678.
  18. Spalart, P.R., “Young Person's Guide to Detached Eddy Simulation Grids,” NASA/CR-2001-211032, 2001.
  19. Constantinescu, G.S., Squires, K.D., “LES and DES Investigations of Turbulent Flow Over a Sphere”, AIAA Paper No. 2000-540, 2000.
  20. Forsythe, J.R., Hoffmann, K.A., Cummings, R.M., and Squires, K. D., “Detached Eddy Simulation with Compressibility Corrections Applied to a Supersonic Axisymmetric Base Flow”, Journal of Fluids Engineering, Vol. 124, 2002, pp. 911-923. https://doi.org/10.1115/1.1517572
  21. Herrin, J.L., and Dutton, C.J., “Supersonic Near-Wake Afterbody Boattailing Effects on Axisymmetric Bodies”, Journal of Spacecraft and Rockets, Vol. 31, No. 6, 1994, pp. 1021-1038. https://doi.org/10.2514/3.26553
  22. Simon, F., Deck, S., and Guillen, P., and Sagaut, P., “Reynolds-Averaged Navier Stokes/Large-Eddy Simulations of Supersonic Base Flow”, AIAA Journal, Vol. 44, No. 11, 2006, pp. 2578-2590. https://doi.org/10.2514/1.21366
  23. Kawai, S., Fujii, K., “Computational Study of Supersonic Base Flow Using Hybrid Turbulence Methodology”, AIAA Journal, Vol. 43, No. 6, 2005, pp. 1265-1275. https://doi.org/10.2514/1.13690
  24. 신재렬, 원수희, 최정열, “초음속 유동장에 소 기저 분출 유동의 대와류 모사”, 한국추진공학회 2008년도 춘계학술대회 논문집, 2008, pp. 332-335.
  25. 신재렬, 문성영, 원수희, 최정열, “초음속 유동에서 기저유동의 Detached Eddy Simulation”, 한국항공우주학회, 제37권 제10호, 2009, pp. 955-966. https://doi.org/10.5139/JKSAS.2009.37.10.955
  26. Kim, K.H., Kim, C., “Accurate, efficient and monotonic numerical methods for multi-dimensional compressible flows Part II: Multi-dimensional limiting process”, Journal of Computational Physics, Vol. 208, 2005, pp. 570-615. https://doi.org/10.1016/j.jcp.2005.02.022
  27. Rumsey, C.L., Sanetrik, M.D., Biedron, R.T., Melson, N.D., Parlette, E.B., “Efficiency and Accuracy of Time-Accurate Turbulent Navier-Stokes Computations”, Computers & Fluids, Vol. 25, No. 2, 1996, pp. 217-236. https://doi.org/10.1016/0045-7930(95)00043-7
  28. Shur, M., Strelets, M., Zaikov, L., Gulyaev, A., Kozlov, V., and Secundov, A., “Comparative Numerical Testing of One- and Two-Equation Turbulence Models for Flows with Separation and Reattachment”, AIAA Paper No. 95-0863, 1995.
  29. Scotti, A., and Meneveau, C., Lilly, D.K., "Generalized Smagorinsky Model for Anisotropic Grids", Phys. Fluids A, Vol. 5, No. 9, 1990, pp. 2306-2308. https://doi.org/10.1063/1.858537
  30. Baurle, R.A., and Tam, C.-J., Edwards, J.R., and Hassan, H. A., “Hybrid Simulation Approach for Cavity Flows: Blending, Algorithm and Boundary Treatment Issues”, AIAA Journal, Vol. 41, No. 8, 2003, pp. 1463-1480. https://doi.org/10.2514/2.2129

Cited by

  1. Numerical Study on the Atomization Process of a Supersonic Gas-Metallic Liquid Atomizer vol.44, pp.7, 2016, https://doi.org/10.5139/JKSAS.2016.44.7.593