DOI QR코드

DOI QR Code

PIERCE STALKS OF EXCHANGE RINGS

  • Chen, Huanyin (DEPARTMENT OF MATHEMATICS HANGZHOU NORMAL UNIVERSITY)
  • Received : 2008.10.02
  • Published : 2010.07.01

Abstract

We prove, in this article, that a ring R is a stable exchange ring if and only if so are all its Pierce stalks. If every Pierce stalks of R is artinian, then $1_R$ = u + $\upsilon$ with u, $\upsilon$ $\in$ U(R) if and only if for any a $\in$ R, there exist u, $\upsilon$ $\in$ U(R) such that a = u + $\upsilon$. Furthermore, there exists u $\in$ U(R) such that $1_R\;{\pm}\;u\;\in\;U(R)$ if and only if for any a $\in$ R, there exists u $\in$ U(R) such that $a\;{\pm}\;u\;\in\;U(R)$. We will give analogues to normal exchange rings. The root properties of such exchange rings are also obtained.

Keywords

References

  1. P. Ara, K. R. Goodearl, K. C. O'Meara, and E. Pardo, Separative cancellation for projective modules over exchange rings, Israel J. Math. 105 (1998), 105-137. https://doi.org/10.1007/BF02780325
  2. D. G. Burkholder, Azumaya rings, Pierce stalks and central ideal algebras, Comm. Algebra 17 (1989), no. 1, 103-113. https://doi.org/10.1080/00927878908823716
  3. D. G. Burkholder, Modules with local Pierce stalks, J. Algebra 145 (1992), no. 2, 339-348. https://doi.org/10.1016/0021-8693(92)90107-W
  4. H. Chen, Exchange rings with Artinian primitive factors, Algebr. Represent. Theory 2 (1999), no. 2, 201-207. https://doi.org/10.1023/A:1009927211591
  5. H. Chen, On exchange rings with all idempotents central, Algebra Colloq. 6 (1999), no. 1, 45-50.
  6. H. Chen, On stable range conditions, Comm. Algebra 28 (2000), no. 8, 3913-3924. https://doi.org/10.1080/00927870008827065
  7. H. Chen, Invertible matrices over weakly stable rings, J. Korean Math. Soc. 46 (2009), no. 2, 257-269. https://doi.org/10.4134/JKMS.2009.46.2.257
  8. K. R. Goodearl, Von Neumann Regular Rings, Pitman, London-San Francisco-Melbourne, 1979; 2nd ed., Krieger, Malabar, Fl., 1991.
  9. C. Huh, N. K. Kim, and Y. Lee, On exchange rings with primitive factor rings Artinian, Comm. Algebra 28 (2000), no. 10, 4989-4993. https://doi.org/10.1080/00927870008827136
  10. T. Y. Lam, A crash course on stable range, cancellation, substitution and exchange, J. Algebra Appl. 3 (2004), no. 3, 301-343. https://doi.org/10.1142/S0219498804000897
  11. A. A. Tuganbaev, Rings Close to Regular, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.
  12. H. P. Yu, On quasi-duo rings, Glasgow Math. J. 37 (1995), no. 1, 21-31. https://doi.org/10.1017/S0017089500030342