DOI QR코드

DOI QR Code

NONBIJECTIVE IDEMPOTENTS PRESERVERS OVER SEMIRINGS

  • Received : 2008.10.01
  • Published : 2010.07.01

Abstract

We classify linear maps which preserve idempotents on $n{\times}n$ matrices over some classes of semirings. Our results include many known semirings like the semiring of all nonnegative integers, the semiring of all nonnegative reals, any unital commutative ring, which is zero divisor free and of characteristic not two (not necessarily a principal ideal domain), and the ring of integers modulo m, where m is a product of distinct odd primes.

Keywords

References

  1. L. B. Beasley and N. J. Pullman, Linear operators preserving idempotent matrices over fields, Linear Algebra Appl. 146 (1991), 7-20. https://doi.org/10.1016/0024-3795(91)90016-P
  2. L. B. Beasley and N. J. Pullman, Linear operators strongly preserving idempotent matrices over semirings, Linear Algebra Appl. 160 (1992), 217-229. https://doi.org/10.1016/0024-3795(92)90448-J
  3. C.-G. Cao and X. Zhang, Linear preservers between matrix modules over connected commutative rings, Linear Algebra Appl. 397 (2005), 355-366. https://doi.org/10.1016/j.laa.2004.11.013
  4. J.-T. Chan, C.-K. Li, and N.-S. Sze, Mappings on matrices: invariance of functional values of matrix products, J. Aust. Math. Soc. 81 (2006), no. 2, 165-184. https://doi.org/10.1017/S1446788700015809
  5. G.-H. Chan, M.-H. Lim, and K.-K. Tan, Linear preservers on matrices, Linear Algebra Appl. 93 (1987), 67-80. https://doi.org/10.1016/S0024-3795(87)90312-0
  6. P. M. Cohn, Algebra. Vol. 1, Second edition, John Wiley & Sons, Ltd., Chichester, 1982.
  7. D. Dolzan and P. Oblak, Idempotent matrices over antirings, Linear Multilinear Algebra Appl. 431 (2009), no. 5-7, 823-832. https://doi.org/10.1016/j.laa.2009.03.035
  8. J. S. Golan, The theory of semirings with applications in mathematics and theoretical computer science, Pitman Monographs and Surveys in Pure and Applied Mathematics, 54. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1992.
  9. U. Hebisch and H. J. Weinert, Semirings: algebraic theory and applications in computer science, translated from the 1993 German original. Series in Algebra, 5. World Scientific Publishing Co., Inc., River Edge, NJ, 1998.
  10. N. Jacobson, Lectures in Abstract Algebra. Vol. II. Linear algebra, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953.
  11. S. Kirkland and N. J. Pullman, Linear operators preserving invariants of nonbinary Boolean matrices, Linear Multilinear Algebra 33 (1993), no. 3-4, 295-300.
  12. S. Liu, Linear maps preserving idempotence on matrix modules over principal ideal domains, Linear Algebra Appl. 258 (1997), 219-231. https://doi.org/10.1016/S0024-3795(96)00203-0
  13. S.-Z. Song, K.-T. Kang, and L. B. Beasley, Idempotent matrix preservers over Boolean algebras, J. Korean Math. Soc. 44 (2007), no. 1, 169-178. https://doi.org/10.4134/JKMS.2007.44.1.169

Cited by

  1. Onn×nmatrices over a finite distributive lattice vol.60, pp.2, 2012, https://doi.org/10.1080/03081087.2011.574626
  2. Idempotent matrices over antirings vol.431, pp.5-7, 2009, https://doi.org/10.1016/j.laa.2009.03.035
  3. On linear operators strongly preserving invariants of Boolean matrices vol.62, pp.1, 2012, https://doi.org/10.1007/s10587-012-0004-y
  4. On Decompositions of Matrices over Distributive Lattices vol.2014, 2014, https://doi.org/10.1155/2014/202075
  5. The Invertible Linear Operator Preserving {1,2}-Inverses of Matrices over Semirings vol.05, pp.01, 2015, https://doi.org/10.12677/PM.2015.51002