References
- L. B. Beasley and N. J. Pullman, Linear operators preserving idempotent matrices over fields, Linear Algebra Appl. 146 (1991), 7-20. https://doi.org/10.1016/0024-3795(91)90016-P
- L. B. Beasley and N. J. Pullman, Linear operators strongly preserving idempotent matrices over semirings, Linear Algebra Appl. 160 (1992), 217-229. https://doi.org/10.1016/0024-3795(92)90448-J
- C.-G. Cao and X. Zhang, Linear preservers between matrix modules over connected commutative rings, Linear Algebra Appl. 397 (2005), 355-366. https://doi.org/10.1016/j.laa.2004.11.013
- J.-T. Chan, C.-K. Li, and N.-S. Sze, Mappings on matrices: invariance of functional values of matrix products, J. Aust. Math. Soc. 81 (2006), no. 2, 165-184. https://doi.org/10.1017/S1446788700015809
- G.-H. Chan, M.-H. Lim, and K.-K. Tan, Linear preservers on matrices, Linear Algebra Appl. 93 (1987), 67-80. https://doi.org/10.1016/S0024-3795(87)90312-0
- P. M. Cohn, Algebra. Vol. 1, Second edition, John Wiley & Sons, Ltd., Chichester, 1982.
- D. Dolzan and P. Oblak, Idempotent matrices over antirings, Linear Multilinear Algebra Appl. 431 (2009), no. 5-7, 823-832. https://doi.org/10.1016/j.laa.2009.03.035
- J. S. Golan, The theory of semirings with applications in mathematics and theoretical computer science, Pitman Monographs and Surveys in Pure and Applied Mathematics, 54. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1992.
- U. Hebisch and H. J. Weinert, Semirings: algebraic theory and applications in computer science, translated from the 1993 German original. Series in Algebra, 5. World Scientific Publishing Co., Inc., River Edge, NJ, 1998.
- N. Jacobson, Lectures in Abstract Algebra. Vol. II. Linear algebra, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953.
- S. Kirkland and N. J. Pullman, Linear operators preserving invariants of nonbinary Boolean matrices, Linear Multilinear Algebra 33 (1993), no. 3-4, 295-300.
- S. Liu, Linear maps preserving idempotence on matrix modules over principal ideal domains, Linear Algebra Appl. 258 (1997), 219-231. https://doi.org/10.1016/S0024-3795(96)00203-0
- S.-Z. Song, K.-T. Kang, and L. B. Beasley, Idempotent matrix preservers over Boolean algebras, J. Korean Math. Soc. 44 (2007), no. 1, 169-178. https://doi.org/10.4134/JKMS.2007.44.1.169
Cited by
- Onn×nmatrices over a finite distributive lattice vol.60, pp.2, 2012, https://doi.org/10.1080/03081087.2011.574626
- Idempotent matrices over antirings vol.431, pp.5-7, 2009, https://doi.org/10.1016/j.laa.2009.03.035
- On linear operators strongly preserving invariants of Boolean matrices vol.62, pp.1, 2012, https://doi.org/10.1007/s10587-012-0004-y
- On Decompositions of Matrices over Distributive Lattices vol.2014, 2014, https://doi.org/10.1155/2014/202075
- The Invertible Linear Operator Preserving {1,2}-Inverses of Matrices over Semirings vol.05, pp.01, 2015, https://doi.org/10.12677/PM.2015.51002