Characteristics of Groundwater Environment in Highly Enriched Areas of Natural Radionuclides

고함량 자연방사성물질 우려지역에 대한 지하수 환경 특성 연구

  • Received : 2010.02.10
  • Accepted : 2010.11.02
  • Published : 2010.12.31

Abstract

Groundwater sampling was performed at 38 wells where they are located in the areas with high uranium and radon (marked as A and B, respectively) concentrations, which were based on the previous research results. In-situ parameters (temperature, pH, EC, Eh, DO) and natural radionuclides (uranium and radon) were analyzed to figure out the characteristics of groundwater environments. In-situ data did not show any relations to natural radionuclide data, which could be caused by groundwater mixing, depths of wells, and geological settings, etc. But the highest radon well presented relatively low temperature value and the highest uranium well presented relatively low pH values The highest uranium concentration ranging $1.14{\sim}188.19{\mu}g/L$ showed in the area of A region consisted of Jurassic two-mica granite. The areas of Jurassic biotite granite and Cretaceous granite in the A region have the uranium concentrations ranging $0.10{\sim}49.78{\mu}g/L$ and $0.36{\sim}3.01{\mu}g/L$, respectively. The uranium values from between wells of community water systems (CWSs) penetrating fractured bed-rock aquifers and personal boreholes settled in shallow aquifers near the wells of CWSs show big differences. It implies that the groundwaters of the two areas have evolved from different water-rock interaction paths that may caused by various types of wells having different aquifers. High radon activities in the area of B region composed of Precambrian gneiss showed ranging from 6,770 to 64,688 pCi/L. Even though the wells are located in the same geological settings, their rodon concentration presented different according to depth and distance.

Keywords

References

  1. 김용제, 조수영, 윤윤열, 이길용, 2006, 극저준위 액체섬광계수기를 이용한 지하수 중 라돈(222Rn) 측정법 등 연구, 지하수토양환경학회, 11(5), 59-66.
  2. 김태승, 박종겸, 엄익춘, 윤정기, 정도환, 강기철, 윤대근, 권지철, 2007, 지하수 중 방사성물질 함유실태 조사(I), 국립환경과학원, p. 155.
  3. 노회정, 김태승, 박종겸, 윤정기, 김문수, 정일록, 정도환, 주병규, 전상호, 심영은, 백용욱, 2008, 지하수 중 방사성물질 함유실태조사(II), 국립환경과학원, p. 195.
  4. 성익환, 김대업, 우형주, 조병욱, 박중권, 이한영, 정강섭, 윤윤열, 조수영, 이용주, 이병대, 김통권, 김경수, 추창오, 신동천, 1999, 지하수 중 방사성물질 함유실태에 관한 조사연구(I), 국립환경과학원, p. 338.
  5. 성익환, 김대업, 우형주, 정강섭, 조병욱, 이병대, 홍영국, 박중권, 윤욱, 이봉주, 김용제, 윤윤열, 조수영, 이인호, 추창오, 김정숙, 심형숙, 신동천, 장태우, 2000, 지하수 중 방사성물질 함유실태에 관한 조사연구(II), 국립환경과학원, p. 323.
  6. 성익환, 조병욱, 우형주, 김대업, 김건한, 박중권, 홍영국, 이병대, 윤욱, 이봉주, 이종철, 윤윤열, 김용제, 정강섭, 조수영, 신동천, 장태우, 유명진, 2001, 지하수 중 방사성물질 함유실태에 관한 조사 연구(III), 국립환경과학원, p. 388.
  7. 성익환, 조병욱, 김대업, 김건한, 박덕원, 박중권, 윤윤열, 이봉주, 이병대, 이종철, 임현철, 정강섭, 조수영, 홍영국, 장우석, 양재하, 신동천, 한인섭, 2002, 지하수 중 방사성물질 함유실태에 관한 조사연구(IV), 국립환경과학원, p. 357.
  8. 조병욱, 김건한, 김연기, 성익환, 안주성, 윤욱, 윤윤열, 이길용, 이병대, 이홍진, 임현철, 조수영, 홍영국, 2006, 지하수 중 방사성물질 함유실태 조사, 국립환경과학원, p. 200.
  9. 조병욱, 김건한, 김연기, 성익환, 안주성, 윤욱, 윤윤열, 이길용, 이병대, 전철민, 조수영, 채기탁, 최병인, 홍영국, 백승균, 류시원, 2008, 지하수 중 방사성물질 정밀조사(I), 국립환경과학원, p. 293.
  10. 조병욱, 정찬호, 한인섭 2009, 지하수 중 방사성물질 정밀조사(II), 국립환경과학원, p. 273.
  11. 환경부, 1998, 세계보건기구(WHO) 먹는 물 수질 지침서.
  12. 홍영국, 1997, 대전시 지역 라돈 지화학연구, 자원환경지질, 30(1), 51-60.
  13. 홍영국, 홍세선, 2001, 국내 일부 기반암의 유해방사성 U, Th, K 함량연구, 대한자원환경지질학회 2001년도 춘계 공동학술발표회, p. 341-343.
  14. 한국지질자원연구원, 1965, 1:50,000 가평지질도.
  15. 한국지질자원연구원, 1974, 1:50,000 춘천지질도.
  16. 한국지질자원연구원, 1977, 1:50,000 유성지질도.
  17. 한국지질자원연구원, 1980, 1:50,000 대전지질도.
  18. 한국지질자원연구원, 1996, 1:250,000 대전지질도.
  19. Banks, D., Frengstad, B., Midtgard, A.K., Krog, J.R., and Strand, T., 1998, The chemistry of Norwegian groundwaters: I. The distribution of radon, major and minor elements in 1604 crystalline bedrock groundwaters, The Science of the Total Environment, 222, 71-91. https://doi.org/10.1016/S0048-9697(98)00291-5
  20. Banks, D., 1998, The chemistry of Norwegian groundwaters: II. The chemistry of 72 groundwaters form Quaternary sedimentary aquifers., The science of the Enveronment, 93-105.
  21. Frengstad B., 2000, The chemistry of Norwegian groundwater III. The distribution of trace elements in 476 crystalline bedrock groundwaters, as analysed by ICP-MS techniques, Total environment, 246, 21-40. https://doi.org/10.1016/S0048-9697(99)00413-1
  22. Kim, J.H., 1987, Caledonian Ogcheon Orogeny of Korea with special eference to the Ogcheon uraniferous marine black slate. KIGAM report.
  23. Langmuir, D. and Herman, J. S., 1980, mobility of thorium in natural waters at low temperatures. Geochim. Cosmochim. Acta, 44, 1753-1766. https://doi.org/10.1016/0016-7037(80)90226-4
  24. Almeida, R.M.R., Lauria, D.C., Ferreira, A.C., and Sracek., O., 2004, Groundwater radon, radium and uranium concentrations in Regia.o dos Lagos, Rio de Janeiro State, Brazil, Journal of Environmental Radioactivity, 73, 323-334. https://doi.org/10.1016/j.jenvrad.2003.10.006
  25. Tadeusz Andrzej Przylibski, Kalina Mamont-Cie la, Monika Kusyk, Jerzy Dorda, and Beata Koz owska, 2004, Radon concentrationsin groundwaters of the Polish part of the Sudety Mountains (SW Poland), Journal of Environmental Radioactivity, 75, 193-209. https://doi.org/10.1016/j.jenvrad.2003.12.004
  26. USEPA, 2003, National primary drinking water standards, Office of Water, EPA 816-F-03-016.
  27. USGS, 2000, Naturally occurring radionuclides in the ground water of southeastern Pennsylvania, USGS Fact Sheet 012-00.
  28. USGS, 2001, Uranium and radon in ground water in the Lower Illinois River Basin, Water-Resources Investigation report 01- 4056.
  29. Wilhelm, E., Battino, R., and Wilcox, R.J., 1977, Low-pressure Solubility of Gases in Liquid Water, Chem. Revs, 77(2), 219-262. https://doi.org/10.1021/cr60306a003