DOI QR코드

DOI QR Code

STABILITY AND THE EFFECT OF HARVESTING IN A BUDWORM POPULATION MODEL

  • Zaman, Gul (CENTRE FOR ADVANCED MATHEMATICS AND PHYSICS, NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY) ;
  • Kang, Yong-Han (DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY) ;
  • Jung, Il-Hyo (DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY)
  • Received : 2010.07.12
  • Accepted : 2010.08.31
  • Published : 2010.09.25

Abstract

In this work, we consider a nonlinear budworm model by a system of three ordinary differential equations originally created by Ludwig et al. in 1978. The nonlinear system describes the dynamics of the interaction between a budworm and a fir forest. We introduce stability techniques to analyze the dynamical behavior of this nonlinear system. Then we use constant effort harvesting techniques to control the budworm population. We also give numerical simulations of the population model with harvest and without harvest.

Acknowledgement

Supported by : Pusan National University

References

  1. A.A. Berryman and J.A. Millstein, Population Analysis System: PAS-P1a Single Species Analysis, Version 4, Ecological System Analysis, Pullman (WA), 1994.
  2. F. Brauer and C. Castillo-Chavez, Mathematical models in Population Biology and Epidemiology, Springer-Verlag, New York, 2001.
  3. I.D. Bross, Ph.D, Mathematical Models Vs. Animal Models, Americans For Medical Advancement. Vol-1, 1989.
  4. J.S. Burleigh, R.I. Alfaro, J.H. Borden and S. Taylor, Historical and spatial characteristics of spruce budworm Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae) outbreaks in northeastern British Columbia, For. Ecol. Manage. 168 (1-3),(2002) 301-309. https://doi.org/10.1016/S0378-1127(01)00748-4
  5. R.A. Fleming, H.J. Barclay and Candau, Jean-Noe, Scaling-up an autoregressive time-series model (of spruce budworm population dynamics) changes its qualitative behavior, Ecol. Model. 149, (2002) 127-142. https://doi.org/10.1016/S0304-3800(01)00519-1
  6. R. Ilin and R. Kozma, Stability of coupled excitatory inhibitory neural populations and application to control of multi-stable systems, Phys. Lett. A. 360-1, (2000) 66-83.
  7. D. Ludwigs, D.D. Jones and C.S. Holling, Qualitity analysis of insect outbreak system: the spruce budworm and forest, J. Anim. Ecol. 47, (1978) 315-332. https://doi.org/10.2307/3939
  8. L. Maclauchlan, M. Cleary, L. Rankin, A. Stock and K. Buxton, Overievw of forest health in Southeran interior forest region, can be seen at http://www.for.gov.bc.ca/rsi/ForestHealth/PDF/2006Overviewpublication.pdf.
  9. L.E. Maclauchlan, J.E. Brooks and J.C. Hodge, Analysis of historic western spruce budworm defoliation in south central British Columbia, For. Ecol. Manage. 226, (2006) 351-356. https://doi.org/10.1016/j.foreco.2006.02.003
  10. J. Poyry, Forest Health: A techenical paper of generic environmental impact statement of timber harvesting and forest management in Minnesotea, New York, 1992.
  11. T. Royama, Poplation dynamics of the spruce budworm Choristoneura Fumiferana, Ecol. Monogr. 54(4), (1984) 429-462. https://doi.org/10.2307/1942595
  12. A. Quarteroni and F. Saleri, Scientific Computing with MATLAB, Texts in Computational Science and Engineering, Springer-Verlag, Berlin Heidelberg, 2003.
  13. T.W. Swetnam and A.M. Lynch, Multicentury, Regional-Scale Patterns of Western Spruce Budworm Outbreaks, Ecol. Monogr. 63-4, (1993) 399-424. https://doi.org/10.2307/2937153
  14. E. Thiffault, N. Belanger, D. Pare, W.H., Hendershot and A. Munson, Investigating the soil acid-base status in managed boreal forests using the SAFE model, Ecol. Model. 206, (2007) 301-321. https://doi.org/10.1016/j.ecolmodel.2007.03.044
  15. J. Wyller, P. Blomquist and G.T. Einevoll, Turing instability and pattern formation in a two-population neuronal network model, Physica D: Nonlinear Phenomena. 225-1, (2007) 75-93. https://doi.org/10.1016/j.physd.2006.10.004
  16. Y. Xiao and F.V.D. Bosch, The dynamics of an eco-epidemic model with biological control, Ecol. Model. 168, (2003) 203-214. https://doi.org/10.1016/S0304-3800(03)00197-2
  17. G. Zaman, Y. H. Kang and I. H. Jung, The effect of constant yield havesting analysis in the spruce budworm population dynamics, Proc. Am. Int. Phy. 971, (2007) 142-147.