Phosphate Deficiency Stress Response Mediated by Pho Regulon in Bacillus subtilis

Bacillus subtilis의 Pho Regulon을 통한 인산 결핍 스트레스 반응

  • Park, Jae-Yong (Department of Food Science and Nutrition, Catholic University of Daegue)
  • 박재용 (대구가톨릭대학교 식품영양학과)
  • Received : 2010.06.03
  • Accepted : 2010.06.16
  • Published : 2010.06.30

Abstract

Bacillus subtilis PhoP-PhoR two-component system (TCS) senses phosphate deficiency conditions, and then controls expression of the Pho regulon to prolong survival. The sensor histidine kinase, PhoR, is autophosphorylated and transfers the phosphate to the response regulator, PhoP. Phosphorylated PhoP (PhoP~P) binds to repeated 6-bp consensus PhoP binding sequences of Pho regulon promoters and activates or represses gene expression. Pho signal transduction systems are part of interconnected signal transduction network involving at least three TCSs (PhoP-PhoR, ResD-ResE TCS, SpoOA phosphorelay), a global carbon metabolism regulator (CcpA), and transition state regulators (AbrB, ScoC). In addition, PhoP-PhoR TCS is cross related with YycF-YycG TCS by cross-regulation. While indescribable progress has been made in understanding phosphate deficiency stress response through refined expression of the Pho regulon in the recent past years, many important questions still remain. Solving these questions may provide important information for application study using B. subtilis.

인산 결핍기에 직면한 Bacillus subtilis는 PhoP-PhoR twocomponent system (TCS)를 통해 이러한 상황을 인식하고 생존을 유지하기 위해 Pho regulon으로 불리는 일련의 유전자들의 발현을 조절한다. 이때 histidine kinase인 PhoR은 자동 인산화되어, 인산을 response regulator인 PhoP에 전달한다. 인산화된 PhoP (PhoP~P)는 Pho regulon 유전자의 프로모터(promoter) 부위에 존재하는 반복되는 6 bp의 잘 보존된 PhoP 결합서열에 결합하여 해당 유전자의 발현을 활성화시키거나 억제한다. 이러한 Pho regulon 신호전달 시스템은 최소한 세 개의 TCS (PhoP-PhoR, ResD-ResE TCS, SpoOA phosphorelay), 광범위한 탄소대사 조절자(CcpA), 전위기 조절자(AbrB, ScoC) 등을 포함하는 신호전달 시스템과 밀접하게 상호 연결되어 있을 뿐만 아니라, 생육에 필수적인 YycF-YycG TCS와 상호조절을 통한 밀접한 관련을 가지고 있다. Pho regulon에 의한 인산결핍 스트레스 반응을 이해하는데 많은 진척이 있었으나, 많은 의문들은 여전히 남아있다. 이러한 의문들을 푸는 일은 B.subtilis의 응용연구에 중요한 정보를 제공할 것이다.

Keywords

References

  1. Abdel-Fattah, W.R. 2007. Bacillus subtilis PhoP-P direct roles in Pho and Res regulation in response to Pi-stress. PhD Thiesis, University of Illinois, Chicago, USA.
  2. Abdel-Fattah, W.R., Y.H. Chen, A. Eldakak, and F.M. Hulett. 2005. Bacillus subtilis phosphorylated PhoP: Direct activation of the $E\sigma^{A}$- and repression of the $E\sigma^{E}$ -responsive phoB-PS+V promoters during Pho response. J. Bacteriol. 187, 5166-5178. https://doi.org/10.1128/JB.187.15.5166-5178.2005
  3. Allenby, N.E.E., N. O'Connor, Z. Pragai, A.C. Ward, A. Wipat, and C.R. Harwood. 2005. Genome-wide transcriptional analysis of the phosphate starvation stimulon of Bacillus subtilis. J. Bacteriol. 187, 8063-8080. https://doi.org/10.1128/JB.187.23.8063-8080.2005
  4. Antelmann, H., C. Scharf, and M. Hecker. 2000. Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics approach and transcriptional analysis. J. Bacteriol. 182, 4478-4490. https://doi.org/10.1128/JB.182.16.4478-4490.2000
  5. Baek, J.H. and S.Y. Lee. 2006. Novel gene members in the Pho regulon of Escherichia coli. FEMS Microbiol. Lett. 264, 104-109. https://doi.org/10.1111/j.1574-6968.2006.00440.x
  6. Barbieri, C.M. and A.M. Stock. 2008. Universally applicable methods for monitoring response regulator aspartate phosphorylation both in vitro and in vivo using Phos-tag-based reagents. Anal. Biochem. 376, 73-82. https://doi.org/10.1016/j.ab.2008.02.004
  7. Birck, C., Y.H. Chen, F.M. Hulett, and J.P. Samama. 2003. The crystal structure of the phosphorylation domain in PhoP reveals a functional tandem association mediated by an asymmetric interface. J. Bacteriol. 185, 254-261. https://doi.org/10.1128/JB.185.1.254-261.2003
  8. Birkey, S.M., W. Liu, X.H. Zhang, M.F. Duggan, and F.M. Hulett. 1998. Pho signal transduction network reveals direct transcriptional regulation of one two-component system by another two-component regulator: Bacillus subtilis PhoP directly regulates production of ResD. Mol. Microbiol. 30, 943-953. https://doi.org/10.1046/j.1365-2958.1998.01122.x
  9. Bisicchia, P., E. Lioliou, D. Noone, L.I. Salzberg, E. Botella, S. Hübner, and K.M. Devine. 2010. Peptidoglycan metabolism is controlled by the WalRK (YycFG) and PhoPR two-component systems in phosphate-limited Bacillus subtilis cell. Mol. Microbiol. 75, 972-989. https://doi.org/10.1111/j.1365-2958.2009.07036.x
  10. Chen, Y.H., C. Birck, J.P. Samama, and F.M. Hulett. 2003. Residue R113 is essential for PhoP dimerization and function: a residue buried in the asymmetric PhoP dimer interface determined in the PhoPN three-dimensional crystal structure. J. Bacteriol. 185, 262-273. https://doi.org/10.1128/JB.185.1.262-273.2003
  11. Choi, S.K. and M.H. Saier. 2005. Regulation of pho regulon gene expression by the carbon control protein A, CcpA, in Bacillus subtilis. J. Mol. Microbiol. Biotechnol. 10, 40-50. https://doi.org/10.1159/000090347
  12. Choi, S.K. and M.H. Saier. 2006. Mechanism of CcpA-mediated glucose repression of the resABCDE Operon of Bacillus subtilis. J. Mol. Microbiol. Biotechnol. 11, 104-110. https://doi.org/10.1159/000092822
  13. Eder, S., W. Liu, and F.M. Hulett. 1999. Mutational analysis of the phoD promoter in Bacillus subtilis: Implications for PhoP binding and promoter activation of Pho regulon promoters. J. Bacteriol. 181, 2017-2025.
  14. Eder, S., L. Shi, K. Jensen, K. Yamane, and F.M. Hulett. 1996. A Bacillus subtilis secreted phosphodiesterase alkaline phosphatase is the product of a Pho regulon gene, phoD. Microbiology 142, 2041-2047. https://doi.org/10.1099/13500872-142-8-2041
  15. Eldakak, A. and F.M. Hulett. 2007. Cys303 in the histidine kinase PhoR is crucial for the phosphotransfer reaction in the PhoPR two-component system in Bacillus subtilis. J. Bacteriol. 189, 410-421. https://doi.org/10.1128/JB.01205-06
  16. Fabret, C., V.A. Feher, and J.A. Hoch. 1999. Two-component signal transduction in Bacillus subtilis: How one organism sees its world. J. Bacteriol. 181, 1975-1983.
  17. Hoch, J.A. 2000. Two-component and phosphorelay signal transduction. Curr. Opin. Microbiol. 3, 165-170. https://doi.org/10.1016/S1369-5274(00)00070-9
  18. Howell, A., S. Dubrac, D. Noone, K.I. Varughese, and K. Devin. 2006. Interaction between the YycFG and PhoPR two-component systems in Bacillus subtilis: the PhoR kinase phosphorylates the noncognate YycF response regulator upon phosphate limitation. Mol. Microbiol. 59, 1199-1215. https://doi.org/10.1111/j.1365-2958.2005.05017.x
  19. Hulett, F.M. 2002. The Pho Regulon, pp. 193-201. In A.L. Sonenshein, J.A. Hoch, and R. Losick (eds.), Bacillus subtilis and its closest relatives: from genes to cells. ASM Press, Washington, D.C., USA.
  20. Hulett, F.M., E.E. Kim, C. Bookstein, N.V. Kapp, C.W. Edwards, and H.W. Wyckoff. 1991. Bacillus subtilis alkaline phosphatase III and phosphatase IV. Cloning, sequencing, and comparisons of deduced amino acid sequence with Escherichia coli alkaline phosphatase three-dimensional structure. J. Biol. Chem. 266, 1077-1084.
  21. Hulett, F.M., J.W. Lee, L. Shi, G.F. Sun, R. Chesnut, E. Sharkova, M.F. Duggan, and N. Kapp. 1994. Sequential action of two-component genetic switches regulates the Pho regulon in Bacillus subtilis. J. Bacteriol. 176, 1348-1358. https://doi.org/10.1128/jb.176.5.1348-1358.1994
  22. Jensen, K.K., E. Sharkova, M.F. Duggan, Y. Qi, A. Koide, J.A. Hoch, and F.M. Hulett. 1993. Bacillus subtilis transcription regulator, Spo0A, decreases alkaline phosphatase levels induced by phosphate starvation. J. Bacteriol. 175, 3749-3756. https://doi.org/10.1128/jb.175.12.3749-3756.1993
  23. Jongbloed, J.D.H., U. Martin, H. Antelmann, M. Hecker, H. Tjalsma, G. Venema, S. Bron, J.M.v. Dijl, and J. Müller. 2000. TatC is a specificity determinant for protein secretion via the twin-arginine translocation pathway. J. Biol. Chem. 275, 41350-41357. https://doi.org/10.1074/jbc.M004887200
  24. Kaushal, B., S. Paul, and F.M. Hulett. 2010. Direct regulation of Bacillus subtilis phoPR transcription by transition state regulator ScoC. J. Bacteriol. doi:10.1128/JB.00089-10.
  25. Kim, S.K., M.R. WilmesRiesenberg, and B.L. Wanner. 1996. Involvement of the sensor kinase EnvZ in the in vivo activation of the response-regulator PhoB by acetyl phosphate. Mol. Microbiol. 22, 135-147. https://doi.org/10.1111/j.1365-2958.1996.tb02663.x
  26. Lamarche, M.G., B.L. Wanner, S. Crepin, and J. Harel. 2008. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol. Rev. 32, 461-473. https://doi.org/10.1111/j.1574-6976.2008.00101.x
  27. Laub, M.T. and M. Goulian. 2007. Specificity in two-component signal transduction pathways. Annu. Rev. Genet. 41, 121-145. https://doi.org/10.1146/annurev.genet.41.042007.170548
  28. Le Brun, N.E., J. Bengtsson, and L. Hederstedt. 2000. Genes required for cytochrome c synthesis in Bacillus subtilis. Mol. Microbiol. 36, 638-650.
  29. Liu, W., S. Eder, and F.M. Hulett. 1998. Analysis of Bacillus subtilis tagAB and tagDEF expression during phosphate starvation identifies a repressor role for PhoP-P. J. Bacteriol. 180, 753-758.
  30. Liu, W. and F.M. Hulett. 1997. Bacillus subtilis PhoP binds to the phoB tandem promoter exclusively within the phosphate starvation-inducible promoter. J. Bacteriol. 179, 6302-6310. https://doi.org/10.1128/jb.179.20.6302-6310.1997
  31. Liu, W. and F.M. Hulett. 1998. Comparison of PhoP binding to the tuaA promoter with PhoP binding to other Pho-regulon promoters establishes a Bacillus subtilis Pho core binding site. Microbiology 144, 1443-1450. https://doi.org/10.1099/00221287-144-5-1443
  32. Liu, X. and H.W. Taber. 1998. Catabolite regulation of the Bacillus subtilis ctaBCDEF gene cluster. J. Bacteriol. 180, 6154-6163.
  33. Martinez-Hackert, E. and A.M. Stock. 1997. The DNA-binding domain of OmpR: crystal structure of a winged helix transcription factor. Structure 5, 109-124. https://doi.org/10.1016/S0969-2126(97)00170-6
  34. McCleary, W.R. and J.B. Stock. 1994. Acetyl phosphate and the activation of 2-component response regulators. J. Biol. Chem. 269, 31567-31572.
  35. Nakano, M.M. and F.M. Hulett. 1997. Adaptation of Bacillus subtilis to oxygen limitation. FEMS Microbiol. Lett. 157, 1-7. https://doi.org/10.1111/j.1574-6968.1997.tb12744.x
  36. Nakano, M.M., Y. Zhu, K. Haga, H. Yoshikawa, A.L. Sonenshein, and P. Zuber. 1999. A mutation in the 3-phopsphoglycerate kinase gene allows anaerobic growth of Bacillus subtilis in the absence of ResE kinase. J. Bacteriol. 181, 7087-7097.
  37. Nakano, M.M., Y. Zhu, M. LaCelle, X.H. Zhang, and F.M. Hulett. 2000. Interaction of ResD with regulatory regions of anaerobically induced genes in Bacillus subtilis. Mol. Microbiol. 37, 1198-1207. https://doi.org/10.1046/j.1365-2958.2000.02075.x
  38. Ogura, M., H. Yamaguchi, K.I. Yoshida, Y. Fujita, and T. Tanaka. 2001. DNA microarray analysis of Bacillus subtilis DegU, ComA and PhoP regulons: an approach to comprehensive analysis of B.subtilis two-component regulatory systems Nucleic Acids Res. 29, 3804-3813. https://doi.org/10.1093/nar/29.18.3804
  39. Paul, S., S. Birkey, W. Liu, and F.M. Hulett. 2004. Autoinduction of Bacillus subtilis phoPR operon transcription results from enhanced transcription from $E\sigma^{A}$ - and $E\sigma^{E}$ -responsive promoters by phosphorylated PhoP. J. Bacteriol. 186, 4262-4275. https://doi.org/10.1128/JB.186.13.4262-4275.2004
  40. Pragai, Z., N.E. Allenby, N. O'Connor, S. Dubrac, G. Rapoport, T. Msadek, and C.R. Harwood. 2004. Transcriptional regulation of the phoPR operon in Bacillus subtilis. J. Bacteriol. 186, 1182-1190. https://doi.org/10.1128/JB.186.4.1182-1190.2004
  41. Pragai, Z. and C.R. Harwood. 2002. Regulatory interactions between the Pho and $\sigma^{B}$-dependent general stress regulons of Bacillus subtilis. Microbiology 148, 1593-1602. https://doi.org/10.1099/00221287-148-5-1593
  42. Puri-Taneja, A., S. Paul, Y.H. Chen, and F.M. Hulett. 2006. CcpA causes repression of the phoPR promoter through a novel transcription start site, $P_{A6}$. J. Bacteriol. 188, 1266-1278. https://doi.org/10.1128/JB.188.4.1266-1278.2006
  43. Puri-Taneja, A., M. Schau, Y.H. Chen, and F.M. Hulett. 2007. Regulators of the Bacillus subtilis cydABCD operon: Identification of a negative regulator, CcpA, and a positive regulator, ResD. J. Bacteriol. 189, 3348-3358. https://doi.org/10.1128/JB.00050-07
  44. Qi, Y. and F.M. Hulett. 1998. PhoP-P and RNA polymerases $\sigma^{A}$ holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP-P activator sites within the coding region stimulate transcription in vitro. Mol. Microbiol. 28, 1187-1197. https://doi.org/10.1046/j.1365-2958.1998.00882.x
  45. Qi, Y. and F.M. Hulett. 1998. Role of PhoP similar to P in transcriptional regulation of genes involved in cell wall anionic polymer biosynthesis in Bacillus subtilis. J. Bacteriol. 180, 4007-4010.
  46. Qi, Y., Y. Kobayashi, and F.M. Hulett. 1997. The pst operon of Bacillus subtilis has a phosphate-regulated promoter and is involved in phosphate transport but not in regulation of the Pho regulon. J. Bacteriol. 179, 2534-2539. https://doi.org/10.1128/jb.179.8.2534-2539.1997
  47. Robichon, D., M. Arnaud, R. Gardan, Z. Pragai, M. O'Reilly, G. Rapoport, and M. Debarbouille. 2000. Expression of a new operon from Bacillus subtilis, ykzB-ykoL, under the control of the TnrA and PhoP-PhoR global regulator. J. Bacteriol. 182, 1226-1231. https://doi.org/10.1128/JB.182.5.1226-1231.2000
  48. Rodriuez-Garcia, A., A. Sola-Landa, K. Apel, F. Santos-Beneit, and J.F. Martín. 2009. Phosphate control over nitrogen metabolism in Streptomyces coelicolor: direct and indirect negative control of glnR, glnA, glnII and amtB expression by the response regulator PhoP. Nucleic Acids Res. 37, 3230-3242. https://doi.org/10.1093/nar/gkp162
  49. Schau, M., A. Eldakak, and F.M. Hulett. 2004. Terminal oxidases are essential to bypass the requirement for ResD for full Pho induction in Bacillus subtilis. J. Bacteriol. 186, 8424-8432. https://doi.org/10.1128/JB.186.24.8424-8432.2004
  50. Shi, L. and F.M. Hulett. 1999. The cytoplasmic kinase domain of PhoR is sufficient for the low phosphate-inducible expression of Pho regulon genes in Bacillus subtilis. Mol. Microbiol. 31, 211-222. https://doi.org/10.1046/j.1365-2958.1999.01163.x
  51. Shi, L., W. Liu, and F.M. Hulett. 1999. Decay of activated Bacillus subtilis Pho response regulator, PhoP-P, involves the PhoR-P intermediate. Biochemistry 38, 10119-10125. https://doi.org/10.1021/bi990658t
  52. Smith, M.W. and J.W. Payne. 1992. Expression of periplasmic binding proteins for peptide transport is subject to negative regulation by phosphate limitation in Escherichia coli. FEMS Microbiol. Lett. 79, 183-190.
  53. Strauch, M., V. Webb, G. Spiegelman, and J.A. Hoch. 1990. The Spo0A protein of Bacillus subtilis is a repressor of the abrB gene. Proc. Natl. Acad. Sci. USA 87, 1801-1805. https://doi.org/10.1073/pnas.87.5.1801
  54. Sun, G.F., S.M. Birkey, and F.M. Hulett. 1996. Three twocomponent signal-transduction systems interact for Pho regulation in Bacillus subtilis. Mol. Microbiol. 19, 941-948. https://doi.org/10.1046/j.1365-2958.1996.422952.x
  55. Sun, G.F., E. Sharkova, R. Chesnut, S. Birkey, M.F. Duggan, A. Sorokin, P. Pujic, S.D. Ehrlich, and F.M. Hulett. 1996. Regulators of aerobic and anaerobic respiration in Bacillus subtilis. J. Bacteriol. 178, 1374-1385. https://doi.org/10.1128/jb.178.5.1374-1385.1996
  56. Takemaru, K., M. Mizuno, and Y. Kobayashi. 1996. A Bacillus subtilis gene cluster similar to the Escherichia coli phosphatespecific transport (pst) operon. Microbioloby 142, 2017-2020.
  57. Wanner, B.L. 1992. Is cross regulation by phosphorylation of two-component response regulator protein important in bacteria? J. Bacteriol. 174, 2053-2058. https://doi.org/10.1128/jb.174.7.2053-2058.1992
  58. West, A.H. and A.M. Stock. 2001. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci. 26, 369-376. https://doi.org/10.1016/S0968-0004(01)01852-7
  59. Yuan, Z.C., R. Zaheer, R. Morton, and T.M. Finan. 2006. Genome prediction of PhoB regulated promoters in Sinorhizobium meliloti and twelve proteobacteria. Nucleic Acids Res. 34, 2686-2697. https://doi.org/10.1093/nar/gkl365
  60. Zhang, X.H. and F.M. Hulett. 2000. ResD signal transduction regulator of aerobic respiration in Bacillus subtilis: ctaA promoter regulation. Mol. Microbiol. 37, 1208-1219. https://doi.org/10.1046/j.1365-2958.2000.02076.x
  61. Zhulin, I.B. and B.L. Taylor. 1997. PAS domain S-boxes in archaea, bacteria and sensors for oxygen and redox. Trends Biochem. Sci. 22, 331-333. https://doi.org/10.1016/S0968-0004(97)01110-9