• Title/Summary/Keyword: signal transduction network

Search Result 54, Processing Time 0.026 seconds

m6A in the Signal Transduction Network

  • Jang, Ki-Hong;Heras, Chloe R.;Lee, Gina
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.435-443
    • /
    • 2022
  • In response to environmental changes, signaling pathways rewire gene expression programs through transcription factors. Epigenetic modification of the transcribed RNA can be another layer of gene expression regulation. N6-adenosine methylation (m6A) is one of the most common modifications on mRNA. It is a reversible chemical mark catalyzed by the enzymes that deposit and remove methyl groups. m6A recruits effector proteins that determine the fate of mRNAs through changes in splicing, cellular localization, stability, and translation efficiency. Emerging evidence shows that key signal transduction pathways including TGFβ (transforming growth factor-β), ERK (extracellular signal-regulated kinase), and mTORC1 (mechanistic target of rapamycin complex 1) regulate downstream gene expression through m6A processing. Conversely, m6A can modulate the activity of signal transduction networks via m6A modification of signaling pathway genes or by acting as a ligand for receptors. In this review, we discuss the current understanding of the crosstalk between m6A and signaling pathways and its implication for biological systems.

Development of a browser for signal transduction network to simulate biochemical reaction in a cell (생체내 반응 시뮬레이션을 위한 신호전달 네트워크 브라우저 개발)

  • Yu, Seok Jong;Lee, Sang Joo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.539-542
    • /
    • 2007
  • After introducing some experiment methods including immunoprecipitation and yeast two-hybrid screening, the pool of molecular interaction data is growing fast and databases are produced dramatically. But it is difficult to apply the information to molecular kinetic studies for understanding disease. In this paper, we developed a program that can browse and visualize interactions of cellular molecules using importing heterogeneous external data file. This program support 3D view to navigate and understand more easily and making a signal transduction model that user wants and simulating function to research the model. It was tested for signal transduction of chmotaxis in bacteria.

  • PDF

Comparison of the ${\sigma}^B$-Dependent General Stress Response between Bacillus subtilis and Listeria monocytogenes (Bacillus subtilis와 Listeria monocytogenes의 일반 스트레스반응의 비교)

  • Shin, Ji-Hyun
    • Korean Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.10-16
    • /
    • 2009
  • A diverse range of stresses such as heat, cold, salt, ethanol, oxygen starvation or nutrient starvation induces same stress-responsive proteins. This general stress response enhances bacterial survival significantly. In Bacillus subtilis and closely related Gram-positive bacteria Listeria monocytogenes, the general stress response is controlled by the alternative transcription factor ${\sigma}^B$. The activity of ${\sigma}^B$ is regulated post-translationally by a signal transduction network that has been extensively studied in B. subtilis, and serve as a model for L. monocytogenes. The proposed model of L. monocytogenes signal transduction network is similar to that of B. subtilis, but the energy stress pathway is missing. More than 150 general stress proteins belong to ${\sigma}^B$ regulon of B. subtilis and L. monocytogenes. In both bacteria, ${\sigma}^B$ function is primarily important for resistance to diverse stresses. In addition, ${\sigma}^B$ function contributes to the control of important virulence genes in food-borne pathogen L. monocytogenes. Therefore, understanding of the general stress response is important not only for bacterial physiology, but also for pathogenicity.

Phosphate Deficiency Stress Response Mediated by Pho Regulon in Bacillus subtilis (Bacillus subtilis의 Pho Regulon을 통한 인산 결핍 스트레스 반응)

  • Park, Jae-Yong
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.113-121
    • /
    • 2010
  • Bacillus subtilis PhoP-PhoR two-component system (TCS) senses phosphate deficiency conditions, and then controls expression of the Pho regulon to prolong survival. The sensor histidine kinase, PhoR, is autophosphorylated and transfers the phosphate to the response regulator, PhoP. Phosphorylated PhoP (PhoP~P) binds to repeated 6-bp consensus PhoP binding sequences of Pho regulon promoters and activates or represses gene expression. Pho signal transduction systems are part of interconnected signal transduction network involving at least three TCSs (PhoP-PhoR, ResD-ResE TCS, SpoOA phosphorelay), a global carbon metabolism regulator (CcpA), and transition state regulators (AbrB, ScoC). In addition, PhoP-PhoR TCS is cross related with YycF-YycG TCS by cross-regulation. While indescribable progress has been made in understanding phosphate deficiency stress response through refined expression of the Pho regulon in the recent past years, many important questions still remain. Solving these questions may provide important information for application study using B. subtilis.

The Role of SH2 Domain-containing Leukocyte Phosphoprotein of 76 kDa in the Regulation of Immune Cell Development and Function

  • Koretzky, Gary A.
    • IMMUNE NETWORK
    • /
    • v.9 no.3
    • /
    • pp.75-83
    • /
    • 2009
  • Recent years have seen an explosion of new knowledge defining the molecular events that are critical for development and activation of immune cells. Much of this new information has come from a careful molecular dissection of key signal transduction pathways that are initiated when immune cell receptors are engaged. In addition to the receptors themselves and critical effector molecules, these signaling pathways depend on adapters, proteins that have no intrinsic effector function but serve instead as scaffolds to nucleate multimolecular complexes. This review summarizes some of what has been learned about one such adapter protein, SH2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76), and how it regulates and integrates signals after engagement of immunoreceptors and integrins on various immune cell lineages.

The Roles of Peroxiredoxin and Thioredoxin in Hydrogen Peroxide Sensing and in Signal Transduction

  • Netto, Luis E.S.;Antunes, Fernando
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.65-71
    • /
    • 2016
  • A challenge in the redox field is the elucidation of the molecular mechanisms, by which $H_2O_2$ mediates signal transduction in cells. This is relevant since redox pathways are disturbed in some pathologies. The transcription factor OxyR is the $H_2O_2$ sensor in bacteria, whereas Cys-based peroxidases are involved in the perception of this oxidant in eukaryotic cells. Three possible mechanisms may be involved in $H_2O_2$ signaling that are not mutually exclusive. In the simplest pathway, $H_2O_2$ signals through direct oxidation of the signaling protein, such as a phosphatase or a transcription factor. Although signaling proteins are frequently observed in the oxidized state in biological systems, in most cases their direct oxidation by $H_2O_2$ is too slow ($10^1M^{-1}s^{-1}$ range) to outcompete Cys-based peroxidases and glutathione. In some particular cellular compartments (such as vicinity of NADPH oxidases), it is possible that a signaling protein faces extremely high $H_2O_2$ concentrations, making the direct oxidation feasible. Alternatively, high $H_2O_2$ levels can hyperoxidize peroxiredoxins leading to local building up of $H_2O_2$ that then could oxidize a signaling protein (floodgate hypothesis). In a second model, $H_2O_2$ oxidizes Cys-based peroxidases that then through thiol-disulfide reshuffling would transmit the oxidized equivalents to the signaling protein. The third model of signaling is centered on the reducing substrate of Cys-based peroxidases that in most cases is thioredoxin. Is this model, peroxiredoxins would signal by modulating the thioredoxin redox status. More kinetic data is required to allow the identification of the complex network of thiol switches.

The Mitogen-Activated Protein Kinase Signal Transduction Pathways in Alternaria Species

  • Xu, Houjuan;Xu, Xiaoxue;Wang, Yu-Jun;Bajpai, Vivek K.;Huang, Lisha;Chen, Yongfang;Baek, Kwang-Hyun
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.227-238
    • /
    • 2012
  • Mitogen-activated protein kinase (MAPK) cascades are conserved signaling modules in the eukaryotic cells. They are involved in many major cell processes in fungi such as stress responses, vegetative growth, pathogenicity, secondary metabolism and cell wall integrity. In this review, we summarized the advances of research on the MAPK signaling pathways in Alternaria species. As major phytopathogenic fungi, Alternaria species reduce crop production. In contrast to the five MAPK pathways known in yeast, only three MAPK pathways as Fus3/Kss1-type, Hog1-type, and Slt2-type have been characterized in Alternaria. The Fus3/Kss1-type MAPK pathway participates in regulation of vegetative growth, conidiation, production of some cell-wall-degrading enzymes and pathogenicity. The Hog1-type pathway is involved in osmotic and oxidative stress, fungicides susceptibility and pathogenicity. The Slt2-type MAP kinases play an important role on maintaining cell wall integrity, pathogenicity and conidiation. Although recent advances on the MAPK pathways in Alternaria spp. reveal many important features on the pathogenicity, there are many unsolved problems regarding to the unknown MAP kinase cascade components and network among other major signal transduction. Considering the economic loss induced by Alternaria spp., more researches on the MAPK pathways will need to control the Alternaria diseases.

Ovarian Cancer: Interplay of Vitamin D Signaling and miRNA Action

  • Attar, Rukset;Gasparri, Maria Luisa;Di Donato, Violante;Yaylim, Ilhan;Halim, Talha Abdul;Zaman, Farrukh;Farooqi, Ammad Ahmad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3359-3362
    • /
    • 2014
  • Increasing attention is being devoted to the mechanisms by which cells receive signals and then translate these into decisions for growth, death, or migration. Recent findings have presented significant breakthroughs in developing a deeper understanding of the activation or repression of target genes and proteins in response to various stimuli and of how they are assembled during signal transduction in cancer cells. Detailed mechanistic insights have unveiled new maps of linear and integrated signal transduction cascades, but the multifaceted nature of the pathways remains unclear. Although new layers of information are being added regarding mechanisms underlying ovarian cancer and how polymorphisms in VDR gene influence its development, the findings of this research must be sequentially collected and re-interpreted. We divide this multi-component review into different segments: how vitamin D modulates molecular network in ovarian cancer cells, how ovarian cancer is controlled by tumor suppressors and oncogenic miRNAs and finally how vitamin D signaling regulates miRNA expression. Intra/inter-population variability is insufficiently studied and a better understanding of genetics of population will be helpful in getting a step closer to personalized medicine.

Understanding of Drought Stress Signaling Network in Plants (식물의 물부족 스트레스 신호 전달 네트워크에 대한 이해)

  • Lee, Jae-Hoon
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.376-387
    • /
    • 2018
  • Among a variety of environmental stresses heat, cold, chilling, high salt, drought, and so on exposed to plants, drought stress has been reported as a crucial factor to adversely affect the growth and productivity of plants. Therefore, to understand the mechanism for the drought stress signal transduction pathway in plants is more helpful to develop useful crops that display the enhanced tolerance against drought stress, and to expand crop growing areas. The signal transduction pathway for the drought stress in plants is largely categorized into two types; ABA-dependent pathway and ABA-independent pathway. It has been reported that two transcription factors, AREB/ABF and DREB2, play predominant roles in ABA-dependent and ABA-independent pathways, respectively. In addition to transcriptional regulation mediated by AREB/ABF and DREB2 transcription factors, post-translational modification (such as phosphorylation and ubiquitination) and epigenetic control are importantly involved in the signal transduction for drought stress. In this paper, we review current understanding of signal transduction pathway on drought stress in plants, especially focusing on the biological roles of a variety of signaling components related to drought stress response. Further understanding the mechanism of drought resistance in plants through this review will be useful to establish theoretical basis for developing drought tolerant crops in the future.

Databases and tools for constructing signal transduction networks in cancer

  • Nam, Seungyoon
    • BMB Reports
    • /
    • v.50 no.1
    • /
    • pp.12-19
    • /
    • 2017
  • Traditionally, biologists have devoted their careers to studying individual biological entities of their own interest, partly due to lack of available data regarding that entity. Large, high-throughput data, too complex for conventional processing methods (i.e., "big data"), has accumulated in cancer biology, which is freely available in public data repositories. Such challenges urge biologists to inspect their biological entities of interest using novel approaches, firstly including repository data retrieval. Essentially, these revolutionary changes demand new interpretations of huge datasets at a systems-level, by so called "systems biology". One of the representative applications of systems biology is to generate a biological network from high-throughput big data, providing a global map of molecular events associated with specific phenotype changes. In this review, we introduce the repositories of cancer big data and cutting-edge systems biology tools for network generation, and improved identification of therapeutic targets.