DOI QR코드

DOI QR Code

Cloning and Expression of a Thermostable ${\alpha}$-Galactosidase from the Thermophilic Fungus Talaromyces emersonii in the Methylotrophic Yeast Pichia pastoris

  • Simila, Janika (Molecular Glycobiotechnology Group, Biochemistry, School of Natural Sciences, National University of Ireland, University Road) ;
  • Gernig, Anita (AGES - Austrian Agency for Health and Food Safety, Institute for Inspections, Medical Devices and Haemovigilance) ;
  • Murray, Patrick (Shannon Applied Biotechnology Centre, Enterprise Acceleration Centre, Limerick Institute of Technology) ;
  • Fernandes, Sara (Biological Sciences and Applied Microbiology Group, Centre of Biological Engineering, Universidade do Minho) ;
  • Tuohy, Maria G. (Molecular Glycobiotechnology Group, Biochemistry, School of Natural Sciences, National University of Ireland, University Road)
  • Received : 2010.05.31
  • Accepted : 2010.09.13
  • Published : 2010.12.28

Abstract

The first gene (${\alpha}$-gal1) encoding an extracellular ${\alpha}$-Dgalactosidase from the thermophilic fungus Talaromyces emersonii was cloned and characterized. The ${\alpha}$-gal1 gene consisted of an open reading frame of 1,792 base pairs interrupted by six introns that encoded a mature protein of 452 amino acids, including a 24 amino acid secretory signal sequence. The translated protein had highest identity with other fungal ${\alpha}$-galactosidases belonging to glycosyl hydrolase family 27. The ${\alpha}$-gal1 gene was overexpressed as a secretory protein with an N-terminal histidine tag in the methylotrophic yeast Pichia pastoris. Recombinant ${\alpha}$-Gal1 was secreted into the culture medium as a monomeric glycoprotein with a maximal yield of 10.75 mg/l and purified to homogeneity using Hisbinding nickel-agarose affinity chromatography. The purified enzyme was maximally active at $70^{\circ}C$, pH 4.5, and lost no activity over 10 days at $50^{\circ}C$. ${\alpha}$-Gal1 followed Michaelis-Menten kinetics ($V_{max}\;of\;240.3{\mu}M/min/mg,\;K_m\;of\;0.294 mM$) and was inhibited competitively by galactose ($K_m{^{obs}}$ of 0.57 mM, $K_i$ of 2.77 mM). The recombinant T. emersonii ${\alpha}$-galactosidase displayed broad substrate preference, being active on both oligo- and polymeric substrates, yet had strict specificity for the ${\alpha}$-galactosidic linkage. Owing to its substrate preference and noteworthy stability, ${\alpha}$-Gal1 is of particular interest for possible biotechnological applications involving the processing of plant materials.

Keywords

References

  1. Baik, S. H., K. Saito, A. Yokota, K. Asano, and F. Tomita. 2000. Molecular cloning and high-level expression in Escherichia coli of fungal $\alpha$-galactosidase from Absidia corymbifera IFO 8084. J. Biosci. Bioeng. 90: 168-173.
  2. Bradford, M. M. 1976. A rapid and sensitive method for the qualification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Cantarel, B. L., P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, and B. Henrissat. 2009. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucl. Acids Res. 37: D233-D238. https://doi.org/10.1093/nar/gkn663
  4. Cao, Y., Y. Wang, K. Meng, Y. Bai, P. Shi, H. Luo, et al. 2009. A novel protease-resistant alpha-galactosidase with high hydrolytic activity from Gibberella sp. F75: Gene cloning, expression, and enzymatic characterization. Appl. Microbiol. Biotechnol. 83: 875-855. https://doi.org/10.1007/s00253-009-1939-2
  5. Cao, Y., W. Yaru, L. Huiying, S. Pengjun, M. Kun, Z. Zhigang, Z. Zhifang, and Y. Bin. 2009. Molecular cloning and expression of a novel protease-resistant GH-36 alpha-galactosidase from Rhizopus sp. F78 ACCC 30795. J. Microbiol. Biotechnol. 19: 1295-1300.
  6. Chen, Y., M. Jin, T. Esborge, G. Coppola, J. Andre, and D. H. Calhoun. 2000. Expression and characterization of glycosylated and catalytically active recombinant human $\alpha$-galactosidase A produced in Pichia pastoris. Protein Expr. Purif. 20: 472-484. https://doi.org/10.1006/prep.2000.1325
  7. Chomczynski, P. and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159.
  8. Clarke, J. H., K. Davidson, J. E. Rixon, J. R. Halstead, M. P. Fransen, H. J. Gilbert, and G. P. Hazlewood. 2000. A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, mannanase and $\alpha$-galactosidase. Appl. Microbiol. Biotechnol. 53: 661-667. https://doi.org/10.1007/s002530000344
  9. Comfort, D. A., K. S. Bobrov, D. R. Ivanen, K. A. Shabalin, J. M. Harris, A. A. Kulminskaya, H. Brumer, and R. M. Kelly. 2007. Biochemical analysis of Thermotoga maritima GH36 $\alpha$-galactosidase (TmGalA) confirms the mechanistic commonality of clan GH-D glycoside hydrolases Biochemistry 46: 3319-3330. https://doi.org/10.1021/bi061521n
  10. De Vries, R. P., H. C. Van Den Broeck, E. Dekkers, P. Manzanares, L. H. De Graaf, and J. Visser. 1999. Differential expression of three $\alpha$-galactosidase genes and a single $\beta$-galactosidase gene from Aspergillus niger. Appl. Environ. Microbiol. 65: 2453-2460.
  11. De Vries, R. P. and J. Visser. 2001. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol. Molec. Biol. Rev. 65: 497-522. https://doi.org/10.1128/MMBR.65.4.497-522.2001
  12. Falkoski, D. L., V. M. Guimaraes, C. M. Callegari, A. P. Reis, E. G. De Barros, and S. T. De Rezende. 2006. Processing of soybean products by semipurified plant and microbial $\alpha$-galactosidases. J. Agric. Food Chem. 54: 10184-10190. https://doi.org/10.1021/jf0617162
  13. Girigowda, K., S. S. Kapnoor, D. Kulkarni, and V. H. Mulimani. 2007. Degradation of raffinose oligosaccharides in soymilk by immobilized $\alpha$-galactosidase of Aspergillus oryzae. J. Microbiol. Biotechnol. 17: 1430-1436.
  14. Golubev, A. M., R. A. P. Nagem, J. R. Brandao Neto, K. N. Neustroev, E. V. Eneyskaya, A. A. Kulminskaya, K. A. Shabalin, A. N. Savel'ev, and I. Polikarpov. 2004. Crystal structure of $\alpha$-galactosidase from Trichoderma reesei and its complex with galactose: Implications for catalytic mechanism. J. Molec. Biol. 339: 413-422. https://doi.org/10.1016/j.jmb.2004.03.062
  15. Gray, K. A., L. Zhao, and M. Emptage. 2006. Bioethanol. Curr. Opin. Chem. Biol. 10: 141-146. https://doi.org/10.1016/j.cbpa.2006.02.035
  16. Maheshwari, R., G. Bharadwaj, and M. K. Bhat. 2000. Thermophilic fungi: Their physiology and enzymes. Microbiol. Molec. Biol. Rev. 64: 461-488. https://doi.org/10.1128/MMBR.64.3.461-488.2000
  17. Mi, S., K. Meng, Y. Wang, Y. Bai, T. Yung, H. Luo, and B. Yao. 2007. Molecular cloning and characterization of a novel $\alpha$- galactosidase gene from Penicillium sp. F63 CGMCC 1669 and expression in Pichia pastoris. Enz. Microbial Technol. 40: 1373-1380. https://doi.org/10.1016/j.enzmictec.2006.10.017
  18. Moloney, A. P., P. J. Considine, and M. P. Coughlan. 1983. Cellulose hydrolysis by the cellulases produced by Talaromyces emersonii when grown on different inducing substrates. Biotechnol. Bioeng. 25: 1169-1173. https://doi.org/10.1002/bit.260250423
  19. Naumoff, D. G. 2004. Phylogenetic analysis of $\alpha$-galactosidases of the GH27 family. Molec. Biol. 38: 463-476.
  20. Ollson, M. L., C. A. Hill, H. de la Vega, Q. P. Liu, M. R. Stroud, J. Valdinocci, S. Moon, H. Clausen, and M. S. Kruskall. 2004. Universal red blood cells - enzymatic conversion of blood group A and B antigens. Transfus. Clin. Biol. 11: 33-39. https://doi.org/10.1016/j.tracli.2003.12.002
  21. Patil, A. G. G., N. V. Kote, and V. Mulimani. 2009. Enzymatic removal of flatulence-inducing sugars in chickpea milk using free and polyvinyl alcohol immobilized $\alpha$-galactosidase from Aspergillus oryzae. J. Ind. Microbiol. Biotechnol. 36: 29-33. https://doi.org/10.1007/s10295-008-0467-x
  22. Raeder, U. and P. Broda. 1985. Rapid preparation of DNA from filamentous fungi. Lett. Appl. Microbiol. 1: 17-20. https://doi.org/10.1111/j.1472-765X.1985.tb01479.x
  23. Rezessy-Szabo, J. M., Q. D. Ngyen, A. Hoschke, C. Braet, G. Hajos, and M. Claeyssens. 2007. A novel thermostable $\alpha$-galactosidase from the thermophilic fungus Thermomyces lanuginosus CBS 395.62/b: Purification and characterization. Biochim. Biophys. Acta 1770: 55-62. https://doi.org/10.1016/j.bbagen.2006.06.022
  24. Rozenfeld, P. A. 2009. Fabry disease: Treatment and diagnosis. IUBMB Life 61: 1043-1050. https://doi.org/10.1002/iub.257
  25. Rye, C. S. and S. G. Withers. 2000. Glycosidase mechanisms. Curr. Opin. Chem. Biol. 4: 573-580. https://doi.org/10.1016/S1367-5931(00)00135-6
  26. Shankar, S. K., S. K. Dhananjay, and V. H. Mulimani. 2009. Purification and characterization of thermostable $\alpha$-galactosidase from Aspergillus terreus GR. Appl. Biochem. Biotechnol. 152: 275-285. https://doi.org/10.1007/s12010-008-8271-7
  27. Shibuya, H., H. Nagasaki, S. Kaneko, S. Yoshida, G. G. Park, I. Kusakabe, and H. Kobayashi. 1998. Cloning and highlevel expression of $\alpha$-galactosidase cDNA from Penicillium purpurogenum. Appl. Environ. Microbiol. 64: 4489-4494.
  28. Soh, C.-P., Z. M. Ali, and H. Lazan. 2006. Characterization of an $\alpha$-galactosidase with potential relevance to ripening related texture changes. Phytochemistry 67: 242-254. https://doi.org/10.1016/j.phytochem.2005.09.032
  29. Song, D. and S. K. C. Chang. 2006. Enzymatic degradation of oligosaccharides in pinto bean flour. J. Agric. Food Chem. 54: 1296-1301. https://doi.org/10.1021/jf0517041
  30. Spangenberg, P., C. Andre, M. Dion, C. Rabiller, and R. Mattes. 2000. Comparative study of new [alpha]-galactosidases in transglycosylation reactions. Carbohydr. Res. 329: 65-73. https://doi.org/10.1016/S0008-6215(00)00170-1
  31. Sripuan, T., K. Aoki, K. Yamamoto, D. Tongkao, and H. Kumagai. 2003. Purification and characterization of thermostable $\alpha$-galactosidase from Ganoderma lucidum. Biosci. Biotechnol. Biochem. 67: 1485-1491. https://doi.org/10.1271/bbb.67.1485
  32. Turner, P., G. Mamo, and E. Nordberg-Karlsson. 2007. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb. Cell Fact. 6.
  33. Viana, P. A., S. T. De Renende, V. M. Marqoues, L. M. Trevizano, F. M. L. Passos, M. G. A. Oliveira, M. P. Bemquerer, J. S. Oliveira, and V. M. Guimaraes. 2006. Extracellular $\alpha$-galactosidase from Debaromyces hansenii UFV-1 and its use in the hydrolysis of raffinose oligosaccharides. J. Agric. Food Chem. 54: 2385-2391. https://doi.org/10.1021/jf0526442
  34. Viana, P. A., S. T. de Rezende, F. M. L. Passos, J. S. Oliveira, K. N. Teixeira, A. M. C. Santos, et al. 2009. Debaryomyces hansenii UFV-1 intracellular alpha-galactosidase characterization and comparative studies with the extracellular enzyme. J. Agric. Food Chem. 57: 2515-2522. https://doi.org/10.1021/jf8030919
  35. Withers, S. G. and R. Aebersold. 1995. Approaches to labelling and identification of active site residues in glycosidases. Protein Sci. 4: 361-372.
  36. Yamashita, A., H. Hashimoto, K. Fujita, M. Okada, S. Mori, and S. Kitahata. 2005. Reverse reaction of Aspergillus niger $\alpha$-galactosidase in a supersaturated substrate solution: Production of $\alpha$-linked galactooligosaccharide ($\alpha$-GOS). Biosci. Biotechnol. Biochem. 69: 1381-1388. https://doi.org/10.1271/bbb.69.1381
  37. Zeilinger, S., D. Kristufek, I. Arisan-Atac, R. Hodits, and C. P. Kubicek. 1993. Conditions of formation, purification, and characterization of an $\alpha$-galactosidase of Trichoderma reesei RUT C-30. Appl. Environ. Microbiol. 59: 1347-1353.
  38. Zhang, Y.-P., F. Gong, G.-Q. Bao, H.-W. Gao, S.-P. Ji, Y.-X. Tan, et al. 2007. B to O erythrocyte conversion by the recombinant $\alpha$-galactosidase. Chinese Med. J. 120: 1145-1150.
  39. Zhu, A., C. Monahan, Z. Zhang, R. Hurst, L. Leng, and J. Goldstein. 1995. High-level expression and purification of coffee bean alpha-galactosidase produced in the yeast Pichia pastoris. Arch. Biochem. Biophys. 324: 65-70. https://doi.org/10.1006/abbi.1995.9928

Cited by

  1. Biotechnological potential of microbial α-galactosidases vol.34, pp.4, 2010, https://doi.org/10.3109/07388551.2013.794124
  2. Insights into the substrate specificity and synergy with mannanase of family 27 α-galactosidases from Neosartorya fischeri P1 vol.99, pp.3, 2010, https://doi.org/10.1007/s00253-014-6269-3
  3. A Fungal α-Galactosidase from Tricholoma matsutake with Broad Substrate Specificity and Good Hydrolytic Activity on Raffinose Family Oligosaccharides vol.20, pp.8, 2010, https://doi.org/10.3390/molecules200813550
  4. Purification of thermostable α‐galactosidase from Irpex lacteus and its use for hydrolysis of oligosaccharides vol.56, pp.5, 2010, https://doi.org/10.1002/jobm.201500668
  5. Hydrolysis of oligosaccharides by a fungal α‐galactosidase from fruiting bodies of a wild mushroom Leucopaxillus tricolor vol.58, pp.12, 2018, https://doi.org/10.1002/jobm.201800215
  6. Whole Conversion of Soybean Molasses into Isomaltulose and Ethanol by Combining Enzymatic Hydrolysis and Successive Selective Fermentations vol.9, pp.8, 2010, https://doi.org/10.3390/biom9080353
  7. Optimization of Saccharomyces cerevisiae α-galactosidase production and application in the degradation of raffinose family oligosaccharides vol.18, pp.None, 2010, https://doi.org/10.1186/s12934-019-1222-x
  8. Characterization of a highly stable α-galactosidase from thermophilic Rasamsonia emersonii heterologously expressed in a modified Pichia pastoris expression system vol.18, pp.None, 2019, https://doi.org/10.1186/s12934-019-1234-6
  9. High-yield production and biochemical characterization of α-galactosidase produced from locally isolated Penicillium sp. vol.44, pp.1, 2010, https://doi.org/10.1186/s42269-020-00420-x