DOI QR코드

DOI QR Code

Response of Saccharomyces cerevisiae to Ethanol Stress Involves Actions of Protein Asr1p

  • Ding, Junmei (Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University) ;
  • Huang, Xiaowei (Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University) ;
  • Zhao, Na (Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University) ;
  • Gao, Feng (Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University) ;
  • Lu, Qian (Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University) ;
  • Zhang, Ke-Qin (Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University)
  • Received : 2010.07.12
  • Accepted : 2010.09.01
  • Published : 2010.12.28

Abstract

During the fermentation process of Saccharomyces cerevisiae, yeast cells must rapidly respond to a wide variety of external stresses in order to survive the constantly changing environment, including ethanol stress. The accumulation of ethanol can severely inhibit cell growth activity and productivity. Thus, the response to changing ethanol concentrations is one of the most important stress reactions in S. cerevisiae and worthy of thorough investigation. Therefore, this study examined the relationship between ethanol tolerance in S. cerevisiae and a unique protein called alcohol sensitive RING/PHD finger 1 protein (Asr1p). A real-time PCR showed that upon exposure to 8% ethanol, the expression of Asr1 was continuously enhanced, reaching a peak 2 h after stimulation. This result was confirmed by monitoring the fluorescence levels using a strain with a green fluorescent protein tagged to the C-terminal of Asr1p. The fluorescent microscopy also revealed a change in the subcellular localization before and after stimulation. Furthermore, the disruption of the Asr1 gene resulted in hypersensitivity on the medium containing ethanol, when compared with the wild-type strain. Thus, when taken together, the present results suggest that Asr1 is involved in the response to ethanol stress in the yeast S. cerevisiae.

Keywords

References

  1. Alexandre, H., V. Ansanay-Galeote, S. Dequin, and B. Blondin. 2001. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett. 498: 98-103. https://doi.org/10.1016/S0014-5793(01)02503-0
  2. Aravind, L., L. M. Iyer, and E. V. Koonin. 2003. Scores of RINGS but no PHDs in ubiquitin signaling. Cell Cycle 2: 123-126. https://doi.org/10.4161/cc.2.2.335
  3. Bahler, J., J. Q. Wu, M. S. Longtine, N. G. Shah, A. McKenzie 3rd, A. B. Steever, A. Wach, P. Philippsen, and J. R. Pringle. 1998. Heterologous modules for efficient and versatile PCRbased gene targeting in Schizosaccharomyces pombe. Yeast 14: 943-951. https://doi.org/10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y
  4. Bailer, S. M., C. Balduf, J. Katahira, A. Podtelejnikov, C. Rollenhagen, M. Mann, N. Pante, and E. Hurt. 2000. Nup116p associates with the Nup82p-Nsp1p-Nup159p nucleoporin complex. J. Biol. Chem. 275: 23540-23548. https://doi.org/10.1074/jbc.M001963200
  5. Betz, C., G. Schlenstedt, and S. M. Bailer. 2004. Asr1p, a novel yeast RING/PHD finger protein, signals alcohol stress to the nucleus. J. Biol. Chem. 279: 28174-28181. https://doi.org/10.1074/jbc.M401595200
  6. Bienz, M. 2006. The PHD finger, a nuclear protein-interaction domain. Trends. Biochem. Sci. 31: 35-40. https://doi.org/10.1016/j.tibs.2005.11.001
  7. Brachmann, C. B., A. Davies, G. J. Cost, E. Caputo, J. Li, P. Hieter, and J. D. Boeke. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115-132. https://doi.org/10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2
  8. Bustin, S. A. 2002. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. J. Mol. Endocrinol. 29: 23-39. https://doi.org/10.1677/jme.0.0290023
  9. Capili, A. D., D. C. Schultz, I. F. Rauscher, and K. L. Borden. 2001. Solution structure of the PHD domain from the KAP-1 corepressor: Structural determinants for PHD, RING and LIM zinc-binding domains. EMBO J. 20: 165-177. https://doi.org/10.1093/emboj/20.1.165
  10. Daulny, A., F. Geng, M. Muratani, J. M. Geisinger, S. E. Salghetti, and W. P. Tansey. 2008. Modulation of RNA polymerase II subunit composition by ubiquitylation. Proc. Natl. Acad. Sci. U.S.A. 105: 19649-19654. https://doi.org/10.1073/pnas.0809372105
  11. Goffeau, A., B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon, H. Feldmann, et al. 1996. Life with 6000 genes. Science 274: 546-567. https://doi.org/10.1126/science.274.5287.546
  12. Gorner, W., E. Durchschlag, J. Wolf, E. L. Brown, G. Ammerer, H. Ruis, and C. Schuller. 2002. Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor. EMBO J. 21: 135-144. https://doi.org/10.1093/emboj/21.1.135
  13. Gorner, W., E. Durchschlag, M. T. Martinez-Pastor, F. Estruch, G. Ammerer, B. Hamilton, H. Ruis, and C. Schuller. 1998. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev. 12: 586-597. https://doi.org/10.1101/gad.12.4.586
  14. Hoffman, C. S. and F. Winston. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57: 267-272. https://doi.org/10.1016/0378-1119(87)90131-4
  15. Izawa, S., K. Ikeda, T. Kita, and Y. Inoue. 2006. Asr1, an alcohol-responsive factor of Saccharomyces cerevisiae, is dispensable for alcoholic fermentation. Appl. Microbiol. Biotechnol. 72: 560-565. https://doi.org/10.1007/s00253-005-0294-1
  16. Knop, M., K. Siegers, G. Pereira, W. Zachariae, B. Winsor, K. Nasmyth, and E. Schiebel. 1999. Epitope tagging of yeast genes using a PCR-based strategy: More tags and improved practical routines. Yeast 15: 963-972. https://doi.org/10.1002/(SICI)1097-0061(199907)15:10B<963::AID-YEA399>3.0.CO;2-W
  17. Lee, S., T. Carlson, N. Christian, K. Lea, J. Kedzie, J. P. Reilly, and J. J. Bonner. 2000. The yeast heat shock transcription factor changes conformation in response to superoxide and temperature. Mol. Biol. Cell 11: 1753-1764.
  18. Martinez-Pastor, M. T., G. Marchler, C. Schuller, A. Marchler- Bauer, H. Ruis, and F. Estruch. 1996. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J. 15: 2227-2235.
  19. Ogawa, Y., A. Nitta, H. Uchiyama, T. Imamura, H. Shimoi, and K. Ito. 2000. Tolerance mechanism of the ethanol-tolerant mutant of sake yeast. J. Biosci. Bioeng. 90: 313-320.
  20. Pacher, P., J. S. Beckman, and L. Liaudet. 2007. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87: 315-424. https://doi.org/10.1152/physrev.00029.2006
  21. Rep, M., V. Reiser, U. Gartner, J. M. Thevelein, S. Hohmann, G. Ammerer, and H. Ruis. 1999. Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol. Cell. Biol. 19: 5474-5485.
  22. Rodriguez, R. and R. Redman. 2008. More than 400 million years of evolution and some plants still can't make it on their own: Plant stress tolerance via fungal symbiosis. J. Exp. Bot. 59: 1109-1114. https://doi.org/10.1093/jxb/erm342
  23. Schiestl, R. H. and R. D. Gietz. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16: 339-346. https://doi.org/10.1007/BF00340712
  24. Schmitt, A. P. and K. McEntee. 1996. Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 93: 5777-5782. https://doi.org/10.1073/pnas.93.12.5777
  25. Schuller, C., J. L. Brewster, M. R. Alexander, M. C. Gustin, and H. Ruis. 1994. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J. 13: 4382-4389.
  26. Takemori, Y., A. Sakaguchi, S. Matsuda, Y. Mizukami, and H. Sakurai. 2006. Stress-induced transcription of the endoplasmic reticulum oxidoreductin gene ERO1 in the yeast Saccharomyces cerevisiae. Mol. Genet. Genomics 275: 89-96. https://doi.org/10.1007/s00438-005-0065-9
  27. Vesely, I. 2005. Heart valve tissue engineering. Circ. Res. 97: 743-755. https://doi.org/10.1161/01.RES.0000185326.04010.9f
  28. Wach, A., A. Brachat, R. Pohlmann, and P. Philippsen. 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10: 1793-1808. https://doi.org/10.1002/yea.320101310
  29. Wach, A., A. Brachat, C. Alberti-Segui, C. Rebischung, and P. Philippsen. 1997. Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13: 1065-1075. https://doi.org/10.1002/(SICI)1097-0061(19970915)13:11<1065::AID-YEA159>3.0.CO;2-K
  30. Whelan, J. A., N. B. Russell, and M. A. Whelan. 2003. A method for the absolute quantification of cDNA using real-time PCR. J. Immunol. Methods 278: 261-269. https://doi.org/10.1016/S0022-1759(03)00223-0
  31. Yeates, C., M. R. Gillings, A. D. Davison, N. Altavilla, and D. A. Veal. 1998. Methods for microbial DNA extraction from soil for PCR amplification. Biol. Proced. Online 1: 40-47. https://doi.org/10.1251/bpo6
  32. Zegzouti, H., W. Li, T. C. Lorenz, M. Xie, C. T. Payne, K. Smith, S. Glenny, G. S. Payne, and S. K. Christensen. 2006. Structural and functional insights into the regulation of Arabidopsis AGC VIIIa kinases. J. Biol. Chem. 281: 35520-35530. https://doi.org/10.1074/jbc.M605167200

Cited by

  1. The Saccharomyces cerevisiae ubiquitin E3 ligase Asr1p targets calmodulin for ubiquitylation vol.411, pp.1, 2010, https://doi.org/10.1016/j.bbrc.2011.06.136
  2. Applications of systems biology towards microbial fuel production vol.19, pp.10, 2010, https://doi.org/10.1016/j.tim.2011.07.005
  3. Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways vol.12, pp.None, 2010, https://doi.org/10.1186/s13068-019-1393-z