DOI QR코드

DOI QR Code

Towards Methionine Overproduction in Corynebacterium glutamicum - Methanethiol and Dimethyldisulfide as Reduced Sulfur Sources

  • Bolten, Christoph J. (Biochemical Engineering Institute, Technische Universitat Braunschweig) ;
  • Schroder, Hartwig (BASF SE, Research Fine Chemicals and Biotechnology) ;
  • Dickschat, Jeroen (Organic Chemistry Institute, Technische Universitat Braunschweig) ;
  • Wittmann, Christoph (Biochemical Engineering Institute, Technische Universitat Braunschweig)
  • Received : 2010.02.17
  • Accepted : 2010.04.14
  • Published : 2010.08.28

Abstract

In the present work, methanethiol and dimethyldisulfide were investigated as sulfur sources for methionine synthesis in Corynebacterium glutamicum. In silico pathway analysis predicted a high methionine yield for these reduced compounds, provided that they could be utilized. Wild-type cells were able to grow on both methanethiol and dimethyldisulfide as sole sulfur sources. Isotope labeling studies with mutant strains, exhibiting targeted modification of methionine biosynthesis, gave detailed insight into the underlying pathways involved in the assimilation of methanethiol and dimethyldisulfide. Both sulfur compounds are incorporated as an entire molecule, adding the terminal S-$CH_3$ group to O-acetylhomoserine. In this reaction, methionine is directly formed. MetY (O-acetylhomoserine sulfhydrylase) was identified as the enzyme catalyzing the reaction. The deletion of metY resulted in methionine auxotrophic strains grown on methanethiol or dimethyldisulfide as sole sulfur sources. Plasmid-based overexpression of metY in the ${\Delta}$metY background restored the capacity to grow on methanethiol or dimethyldisulfide as sole sulfur sources. In vitro studies with the C. glutamicum wild type revealed a relatively low activity of MetY for methanethiol (63 mU/mg) and dimethyldisulfide (61 mU/mg). Overexpression of metY increased the in vitro activity to 1,780 mU/mg and was beneficial for methionine production, since the intracellular methionine pool was increased 2-fold in the engineered strain. This positive effect was limited by a depletion of the metY substrate O-acetylhomoserine, suggesting a need for further metabolic engineering targets towards competitive production strains.

Keywords

References

  1. Becker, J., C. Klopprogge, A. Herold, O. Zelder, C. J. Bolten, and C. Wittmann. 2007. Metabolic flux engineering of L-lysine production in Corynebacterium glutamicum - over expression and modification of G6P dehydrogenase. J. Biotechnol. 132: 99-109. https://doi.org/10.1016/j.jbiotec.2007.05.026
  2. Becker, J., C. Klopprogge, H. Schröder, and C. Wittmann. 2009. Tricarboxylic acid cycle engineering for improved lysine production in Corynebacterium glutamicum. Appl. Environ. Microbiol. 75: 7866-7869. https://doi.org/10.1128/AEM.01942-09
  3. Becker, J., C. Klopprogge, O. Zelder, E. Heinzle, and C. Wittmann. 2005. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl. Environ. Microbiol. 71: 8587-8596. https://doi.org/10.1128/AEM.71.12.8587-8596.2005
  4. Bolten, C. J., P. Kiefer, F. Letisse, J. C. Portais, and C. Wittmann. 2007. Sampling for metabolome analysis of microorganisms. Anal. Chem. 79: 3843-3849. https://doi.org/10.1021/ac0623888
  5. Bonnarme, P., L. Psoni, and H. E. Spinnler. 2000. Diversity of L-methionine catabolism pathways in cheese-ripening bacteria. Appl. Environ. Microbiol. 66: 5514-5517. https://doi.org/10.1128/AEM.66.12.5514-5517.2000
  6. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  7. Dickschat, J. S., H. B. Bode, S. C. Wenzel, R. Muller, and S. Schulz. 2005. Biosynthesis and identification of volatiles released by the myxobacterium Stigmatella aurantiaca. Chembiochem 6: 2023-2033. https://doi.org/10.1002/cbic.200500174
  8. Dickschat, J. S., T. Martens, T. Brinkhoff, M. Simon, and S. Schulz. 2005. Volatiles released by a Streptomyces species isolated from the North Sea. Chem. Biodivers. 2: 837-865. https://doi.org/10.1002/cbdv.200590062
  9. Flavin, M. and C. Slaughter. 1967. Enzymatic synthesis of homocysteine or methionine directly from O-succinyl-homoserine. Biochim. Biophys. Acta 132: 400-405. https://doi.org/10.1016/0005-2744(67)90158-1
  10. Foglino, M., F. Borne, M. Bally, G. Ball, and J. C. Patte. 1995. A direct sulfhydrylation pathway is used for methionine biosynthesis in Pseudomonas aeruginosa. Microbiology 141: 431-439. https://doi.org/10.1099/13500872-141-2-431
  11. Hwang, B. J., H. J. Yeom, Y. Kim, and H. S. Lee. 2002. Corynebacterium glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. J. Bacteriol. 184: 1277-1286. https://doi.org/10.1128/JB.184.5.1277-1286.2002
  12. Ikeda, M. 2003. Amino acid production processes. Adv. Biochem. Eng. Biotechnol. 79: 1-35.
  13. Iwatani, S., S. Van Dien, K. Shimbo, K. Kubota, N. Kageyama, D. Iwahata, et al. 2007. Determination of metabolic flux changes during fed-batch cultivation from measurements of intracellular amino acids by LC-MS/MS. J. Biotechnol. 128: 93-111. https://doi.org/10.1016/j.jbiotec.2006.09.004
  14. Kanzaki, H., M. Kobayashi, T. Nagasawa, and H. Yamada. 1987. Purification and characterization of cystathionine γ- synthase type II from Bacillus sphaericus. Eur. J. Biochem. 163: 105-112. https://doi.org/10.1111/j.1432-1033.1987.tb10742.x
  15. Kiefer, P., E. Heinzle, O. Zelder, and C. Wittmann. 2004. Comparative metabolic flux analysis of lysine-producing Corynebacterium glutamicum cultured on glucose or fructose. Appl. Environ. Microbiol. 70: 229-239. https://doi.org/10.1128/AEM.70.1.229-239.2004
  16. Kiene, R. P., L. J. Linn, J. Gonzalez, M. A. Moran, and J. A. Bruton. 1999. Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Appl. Environ. Microbiol. 65: 4549-4558.
  17. Kromer, J. O., C. J. Bolten, E. Heinzle, H. Schröder, and C. Wittmann. 2008. Physiological response of Corynebacterium glutamicum to oxidative stress induced by deletion of the transcriptional repressor McbR. Microbiology 154: 3917-3930. https://doi.org/10.1099/mic.0.2008/021204-0
  18. Kromer, J. O., M. Fritz, E. Heinzle, and C. Wittmann. 2005. In vivo quantification of intracellular amino acids and intermediates of the methionine pathway in Corynebacterium glutamicum. Anal. Biochem. 340: 171-173. https://doi.org/10.1016/j.ab.2005.01.027
  19. Kromer, J. O., E. Heinzle, H. Schröder, and C. Wittmann. 2006. Accumulation of homolanthionine and activation of a novel pathway for isoleucine biosynthesis in Corynebacterium glutamicum McbR deletion strains. J. Bacteriol. 188: 609-618. https://doi.org/10.1128/JB.188.2.609-618.2006
  20. Kromer, J. O., C. Wittmann, H. Schröder, and E. Heinzle. 2006. Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum. Metab. Eng. 8: 353-369. https://doi.org/10.1016/j.ymben.2006.02.001
  21. Lee, H. S. 2005. Sulfur metabolism and its regulation, pp. 351- 376. In L. Eggeling and M. Bott (eds.). Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton.
  22. Lee, H. S. and B. J. Hwang. 2003. Methionine biosynthesis and its regulation in Corynebacterium glutamicum: Parallel pathways of transsulfuration and direct sulfhydrylation. Appl. Microbiol. Biotechnol. 62: 459-467. https://doi.org/10.1007/s00253-003-1306-7
  23. Mampel, J., H. Schröder, S. Haefner, and U. Sauer. 2005. Single-gene knockout of a novel regulatory element confers methionine resistance and elevates methionine production in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 68: 228-236. https://doi.org/10.1007/s00253-005-1893-6
  24. Mondal, S., Y. B. Das, and S. P. Chatterjee. 1994. Improvement of L-methionine production by double auxotrophic mutants of Brevibacterium heali LT5 and LT18. Res. Ind. 39: 239-241.
  25. Mondal, S., Y. B. Das, and S. P. Chatterjee. 1996. Methionine production by microorganisms. Folia Microbiol. (Praha) 41: 465-472. https://doi.org/10.1007/BF02814659
  26. Park, S. D., J. Y. Lee, S. Y. Sim, Y. Kim, and H. S. Lee. 2007. Characteristics of methionine production by an engineered Corynebacterium glutamicum strain. Metab. Eng. 9: 327-336. https://doi.org/10.1016/j.ymben.2007.05.001
  27. Wittmann, C. 2007. Fluxome analysis using GC-MS. Microb. Cell Fact 6: 6. https://doi.org/10.1186/1475-2859-6-6
  28. Wittmann, C. and J. Becker. 2007. The L-lysine story: From metabolic pathways to industrial production. Microbiol. Monogr. 5: 39-70. https://doi.org/10.1007/7171_2006_089
  29. Wittmann, C., P. Kiefer, and O. Zelder. 2004. Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl. Environ. Microbiol. 70: 7277-7287. https://doi.org/10.1128/AEM.70.12.7277-7287.2004
  30. Wittmann, C., J. O. Krömer, P. Kiefer, T. Binz, and E. Heinzle. 2004. Impact of the cold shock phenomenon on quantification of intracellular metabolites in bacteria. Anal. Biochem. 327: 135-139. https://doi.org/10.1016/j.ab.2004.01.002
  31. Yamagata, S. 1971. Homocysteine synthesis in yeast. Partial purification and properties of O-acetylhomoserine sulfhydrylase. J. Biochem. (Tokyo) 70: 1035-1045. https://doi.org/10.1093/oxfordjournals.jbchem.a129712

Cited by

  1. Metabolic engineering of Corynebacterium glutamicum for production of 1,5-diaminopentane from hemicellulose vol.6, pp.3, 2010, https://doi.org/10.1002/biot.201000304
  2. Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum vol.13, pp.5, 2011, https://doi.org/10.1016/j.ymben.2011.07.006
  3. Systems and synthetic metabolic engineering for amino acid production - the heartbeat of industrial strain development vol.23, pp.5, 2012, https://doi.org/10.1016/j.copbio.2011.12.025
  4. A RubisCO like protein links SAM metabolism with isoprenoid biosynthesis vol.8, pp.11, 2010, https://doi.org/10.1038/nchembio.1087
  5. Methionine production-a critical review vol.98, pp.24, 2010, https://doi.org/10.1007/s00253-014-6156-y
  6. Bacterial methionine biosynthesis vol.160, pp.8, 2010, https://doi.org/10.1099/mic.0.077826-0
  7. Coupling Bioorthogonal Chemistries with Artificial Metabolism: Intracellular Biosynthesis of Azidohomoalanine and Its Incorporation into Recombinant Proteins vol.19, pp.1, 2014, https://doi.org/10.3390/molecules19011004
  8. Identification of two mutations increasing the methanol tolerance of Corynebacterium glutamicum vol.15, pp.None, 2010, https://doi.org/10.1186/s12866-015-0558-6
  9. Biotechnologie von Morgen: metabolisch optimierte Zellen für die bio‐basierte Produktion von Chemikalien und Treibstoffen, Materialien und Gesundheitsprodukten vol.127, pp.11, 2010, https://doi.org/10.1002/ange.201409033
  10. Advanced Biotechnology: Metabolically Engineered Cells for the Bio‐Based Production of Chemicals and Fuels, Materials, and Health‐Care Products vol.54, pp.11, 2010, https://doi.org/10.1002/anie.201409033
  11. Proteome Remodeling in Response to Sulfur Limitation in “ Candidatus Pelagibacter ubique” vol.1, pp.4, 2010, https://doi.org/10.1128/msystems.00068-16
  12. Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate vol.15, pp.None, 2010, https://doi.org/10.1186/s12934-016-0553-0
  13. Molecular evolution and expression divergence of three key Met biosynthetic genes in plants: CGS , HMT and MMT vol.6, pp.None, 2010, https://doi.org/10.7717/peerj.6023
  14. Revisiting the methionine salvage pathway and its paralogues vol.12, pp.1, 2010, https://doi.org/10.1111/1751-7915.13324
  15. Continuous Culture Adaptation of Methylobacterium extorquens AM1 and TK 0001 to Very High Methanol Concentrations vol.10, pp.None, 2019, https://doi.org/10.3389/fmicb.2019.01313
  16. Modular systems metabolic engineering enables balancing of relevant pathways for L -histidine production with Corynebacterium glutamicum vol.12, pp.None, 2010, https://doi.org/10.1186/s13068-019-1410-2
  17. Dimethylsulfoniopropionate Sulfur and Methyl Carbon Assimilation in Ruegeria Species vol.11, pp.2, 2010, https://doi.org/10.1128/mbio.00329-20
  18. An Engineered Escherichia coli Strain with Synthetic Metabolism for in‐Cell Production of Translationally Active Methionine Derivatives vol.21, pp.24, 2010, https://doi.org/10.1002/cbic.202000257
  19. Production of L-Methionine from 3-Methylthiopropionaldehyde and O-Acetylhomoserine by Catalysis of the Yeast O-Acetylhomoserine Sulfhydrylase vol.69, pp.28, 2010, https://doi.org/10.1021/acs.jafc.1c02419