DOI QR코드

DOI QR Code

Influence of the Hydrophobic Amino Acids in the N- and C-Terminal Regions of Pleurocidin on Antifungal Activity

  • Lee, June-Young (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Lee, Dong-Gun (School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University)
  • Received : 2010.04.30
  • Accepted : 2010.05.19
  • Published : 2010.08.28

Abstract

To investigate the influence of the N- or C-terminal regions of pleurocidin (Ple) peptide on antifungal activity, four analogs partially truncated in the N- or C-terminal regions were designed and synthesized. Circular dichroism (CD) spectroscopy demonstrated that all the analogs maintained an alpha-helical structure. The antifungal susceptibility testing also showed that the analogs exhibited antifungal activities against human fungal pathogens, without hemolytic effects against human erythrocytes. The result further indicated that the analogs had discrepant antifungal activities [Ple>Ple (1-22)>Ple (4-25)>Ple (1- 19)>Ple (7-25)] and that N-terminal deletion affected the activities much more than C-terminal deletion. Hydrophobicity [Ple>Ple (1-22)>Ple (4-25)>Ple (1-19)> Ple (7-25)] was thought to have been one of the consistent factors that influenced these activity patterns, rather than the other primary factors like the helicity [Ple>Ple (4-25) >Ple (1-22)>Ple (1-19)>Ple (7-25)] or the net charge [Ple=Ple (4-25)=Ple (7-25)>Ple (1-22)=Ple (1-19)] of the peptides. In conclusion, the hydrophobic amino acids in the N-terminal region of Ple is more crucial for antifungal activity than those in the C-terminal region.

Keywords

References

  1. Albertson, G. D., M. Niimi, R. D. Cannon, and H. F. Jenkinson. 1996. Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob. Agents Chemother. 40: 2835-2841.
  2. Amichai, B. and M. H. Grunwald. 1998. Adverse drug reactions of the new oral antifungal agents - terbinafine, fluconazole, and itraconazole. Int. J. Dermatol. 37: 410-415. https://doi.org/10.1046/j.1365-4362.1998.00496.x
  3. Cole, A. M., P. Weis, and G. Diamond. 1997. Isolation and characterization of pleurocidin, an antimicrobial peptide in the skin secretions of winter flounder. J. Biol. Chem. 272: 12008-12013. https://doi.org/10.1074/jbc.272.18.12008
  4. Dathe, M. and T. Wieprecht. 1999. Structural features of helical antimicrobial peptides: Their potential to modulate activity on model membranes and biological cells. Biochim. Biophys. Acta Biomembr. 1462: 71-87. https://doi.org/10.1016/S0005-2736(99)00201-1
  5. Habermann, E. 1972. Bee and wasp venoms. Science 177: 314-322. https://doi.org/10.1126/science.177.4046.314
  6. Hartsel, S. and J. Bolard. 1996. Amphotericin B: New life for an old drug. Trends Pharmacol. Sci. 17: 445-449. https://doi.org/10.1016/S0165-6147(96)01012-7
  7. Kim, K. J., W. S. Sung, S. K. Moon, J. S. Choi, J. G. Kim, and D. G. Lee. 2008. Antifungal effect of silver nanoparticles on dermatophytes. J. Microbiol. Biotechnol. 18: 1482-1484.
  8. Kontoyiannis, D. P. and R. E. Lewis. 2002. Antifungal drug resistance of pathogenic fungi. Lancet 359: 1135-1144. https://doi.org/10.1016/S0140-6736(02)08162-X
  9. Lee, J. and D. G. Lee. 2008. Structure-antimicrobial activity relationship between pleurocidin and its enantiomer. Exp. Mol. Med. 40: 370-376. https://doi.org/10.3858/emm.2008.40.4.370
  10. Lee, J., H. J. Hong, J. K. Kim, J. S. Hwang, Y. Kim, and D. G. Lee. 2009. A novel antifungal analog peptide derived from protaetiamycine. Mol. Cells 28: 473-477. https://doi.org/10.1007/s10059-009-0155-3
  11. Lee, M. K., H. K. Kim, T. Y. Lee, K. S. Hahm, and K. L. Kim. 2006. Structure-activity relationships of anti-HIV-1 peptides with disulfide linkage between D- and L-cysteine at positions i and i+3, respectively, derived from HIV-1 gp41 C-peptide. Exp. Mol. Med. 38: 18-26. https://doi.org/10.1038/emm.2006.3
  12. Merrifield, B. 1986. Solid phase synthesis. Science 232: 341-347. https://doi.org/10.1126/science.3961484
  13. Niimi, M., N. A. Firth, and R. D. Cannon. 2010. Antifungal drug resistance of oral fungi. Odontology 98: 15-25. https://doi.org/10.1007/s10266-009-0118-3
  14. Perea, S., J. L. López-Ribot, W. R. Kirkpatrick, R. K. McAtee, R. A. Santillán, M. Martínez, D. Calabrese, D. Sanglard, and T. F. Patterson. 2001. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob. Agents Chemother. 45: 2676-2684. https://doi.org/10.1128/AAC.45.10.2676-2684.2001
  15. Sheppard, R. 2003. The fluorenylmethoxycarbonyl group in solid phase synthesis. J. Pept. Sci. 9: 545-552. https://doi.org/10.1002/psc.479
  16. Sung, W. S., I. S. Lee, and D. G. Lee. 2007. Damage to the cytoplasmic membrane and cell death caused by lycopene in Candida albicans. J. Microbiol. Biotechnol. 17: 1797-1804.
  17. Urban, E., E. Nagy, T. Pál, A. Sonnevend, and J. M. Conlon. 2007. Activities of four frog skin-derived antimicrobial peptides (temporin-1DRa, temporin-1Va and the melittin-related peptides AR-23 and RV-23) against anaerobic bacteria. Int. J. Antimicrob. Agents 29: 317-321. https://doi.org/10.1016/j.ijantimicag.2006.09.007
  18. White, T. C., K. A. Marr, and R. A. Bowden. 1998. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin. Microbiol. Rev. 11: 382-402.

Cited by

  1. Influence of the N- and C-Terminal Regions of Antimicrobial Peptide Pleurocidin on Antibacterial Activity vol.22, pp.10, 2010, https://doi.org/10.4014/jmb.1205.05040
  2. Functional characterization of a synthetic hydrophilic antifungal peptide derived from the marine snail Cenchritis muricatus vol.94, pp.4, 2010, https://doi.org/10.1016/j.biochi.2011.12.016
  3. Improved Protease Stability of the Antimicrobial Peptide Pin2 Substituted with d-Amino Acids vol.32, pp.6, 2010, https://doi.org/10.1007/s10930-013-9505-2
  4. Antifungal nanofibers made by controlled release of sea animal derived peptide vol.7, pp.14, 2015, https://doi.org/10.1039/c5nr00767d
  5. Cm-p5: an antifungal hydrophilic peptide derived from the coastal mollusk Cenchritis muricatus (Gastropoda: Littorinidae) vol.29, pp.8, 2015, https://doi.org/10.1096/fj.14-269860
  6. HemoPred: a web server for predicting the hemolytic activity of peptides vol.9, pp.3, 2010, https://doi.org/10.4155/fmc-2016-0188
  7. Antimicrobial Properties of Apis mellifera ’s Bee Venom vol.12, pp.7, 2020, https://doi.org/10.3390/toxins12070451