DOI QR코드

DOI QR Code

Biochemical and Thermal Stabilization Parameters of Polygalacturonase from Erwinia carotovora subsp. carotovora BR1

  • Maisuria, V.B. (Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda) ;
  • Patel, V.A. (Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda) ;
  • Nerurkar, A.S. (Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda)
  • Received : 2009.08.09
  • Accepted : 2010.03.02
  • Published : 2010.07.28

Abstract

With an emphasis on its thermal behavior with different pHs and salts, the kinetic and thermodynamic parameters of the purified polygalacturonase (PG) from E. carotovora subsp. carotovora (Ecc) BR1 were studied, as the characterization of an enzyme is significant in the context of burgeoning biotechnological applications. The thermodynamic parameters for polygalacturonic acid hydrolysis by the purified PG were ${\Delta}H^*$=7.98 kJ/mol, ${\Delta}G^*$=68.86 kJ/mol, ${\Delta}S^*$=-194.48 J/mol/K, ${\Delta}G_{E-S}$=-1.04 kJ/mol, and ${\Delta}G_{E-T}$=-8.96 kJ/mol. In addition, its turnover number ($k_{cat}$) was 21/sec. The purified PG was stable within a temperature range of $20-50^{\circ}C$ and was deactivated at $60^{\circ}C$ and $70^{\circ}C$. The thermodynamic parameters (${\Delta}H^*$, ${\Delta}G^*$, ${\Delta}S^*$) for the irreversible inactivation of the PG at different temperatures ($30-60^{\circ}C$) were determined, where the effectiveness of various salts and different pHs (4-8) for the thermal stability of the PG were also characterized. The efficacy of various salts for the thermal stability of the PG was in the following order: $MgCl_2$ > $BaCl_2$ > KCl > $CaCl_2$ >NaCl. Therefore, the present work presents the biochemical, substrate hydrolysis thermodynamics and the thermal stabilization parameters of the PG from Ecc.

Keywords

References

  1. Barras, F., F. van Gijsegem, and A. K. Chatterjee. 1994. Extracellular enzymes and pathogenesis of soft-rot Erwinia. Annu. Rev. Phytopathol. 32: 201-234. https://doi.org/10.1146/annurev.py.32.090194.001221
  2. D'Amico, S., J. C. Marx, C. Gerday, and G. Feller. 2003. Activity-stability relationships in extremophilic enzymes. J. Biol. Chem. 278: 7891-7896. https://doi.org/10.1074/jbc.M212508200
  3. Declerck, N., M. Machius, P. Joyet, G. Wiegand, R. Huber, and C. Gaillardin. 2003. Hyperthermostabilization of Bacillus licheniformis amylase and modulation of its stability over a $50^{\circ}C$ temperature range. Protein Eng. 16: 287-293. https://doi.org/10.1093/proeng/gzg032
  4. Eyring, H. and A. E. Stearn. 1939. The application of the theory of absolute reaction rates to protein. Chem. Rev. 24: 253-270. https://doi.org/10.1021/cr60078a005
  5. Foster, R. L. 1980. Modification of enzyme activity, pp. 91-161. In P. J. Baron (ed.). The Nature of Enzymology. Croom Helm, London.
  6. Fraissinet-Tachet, L. and M. Fevre. 1996. Regulation by galacturonic acid of pectinolytic enzyme production by Sclerotinia sclerotiorum. Curr. Microbiol. 33: 49-53. https://doi.org/10.1007/s002849900073
  7. Francisco, J. G. M., C. A. O. Maria, and M. R. Angel. 1994. Further thermal characterization of an aspartate aminotransferase from a halophilic organism. Biochem. J. 298: 465-470.
  8. Georis, J., F. L. Esteves, J. L. Brasseur, V. Bougnet, B. Devreese, F. Giannotta, B. Granier, and J. M. Frere. 2000. An additional aromatic interaction improves the thermostability and thermophilicity of a mesophilic family 11 xylanase: Structural basis and molecular study. Protein Sci. 9: 466-475.
  9. Gohel, V. and D. C. Naseby. 2007. Thermal stabilization of chitinolytic enzymes of Pantoea dispersa. Biochem. Eng. J. 16: 57-67.
  10. Gomathi, V. and S. S. Gnanamanickam. 2004. Polygalacturonase-inhibiting proteins in plant defence. Curr. Sci. 87: 1211-1217.
  11. Gummadi, S. N. and T. Panda. 2003. Purification and biochemical properties of microbial pectinases - a review. Process Biochem. 38: 987-996. https://doi.org/10.1016/S0032-9592(02)00203-0
  12. Iyer, P. V. and L. Ananthanarayan. 2008. Enzyme stability and stabilization-Aqueous and non-aqueous environment. Process Biochem. 43: 1019-1032. https://doi.org/10.1016/j.procbio.2008.06.004
  13. Jayani, R. S., S. Saxena, and R. Gupta. 2005. Microbial pectinolytic enzymes: A review. Process Biochem. 40: 2931-2944. https://doi.org/10.1016/j.procbio.2005.03.026
  14. Johncon, J., M. Miura, and S. Tsuyumu. 1994. Cloning of a region encoding multiple polygalacturonase of Erwinia carotovora subsp. carotovora EC1. Ann. Phytopath. Soc. Japan 60: 202-207. https://doi.org/10.3186/jjphytopath.60.202
  15. Kapat, A. and T. Panda. 1997. pH and thermal stability studies of chitinase from Trichoderma harzianum: A thermodynamic consideration. Bioprocess Biosyst. Eng. 16: 269-272. https://doi.org/10.1007/s004490050321
  16. Kashyap, D. R., P. K. Vohra, S. R. Chopra, and R. Tewari. 2001. Applications of pectinases in the commercial sector: A review. Bioresour. Technol. 77: 215-227. https://doi.org/10.1016/S0960-8524(00)00118-8
  17. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  18. Manjon, A., J. L. Iborra, C. Romero, and M. Canovas. 1992. Properties of pectinesterase and endo-D-polygalacturonase coimmobilized in a porous glass support. Appl. Biochem. Biotechnol. 37: 19-31. https://doi.org/10.1007/BF02788854
  19. Massa, C., G. Degrassi, G. Devescovi, V. Venturi, and D. Lamba. 2007. Isolation, heterologous expression and characterization of an endo-polygalacturonase produced by the phytopathogen Burkholderia cepacia. Protein Express. Purif. 54: 300-308. https://doi.org/10.1016/j.pep.2007.03.019
  20. McKeon, T. A. 1988. Activity stain for polygalacturonase. J. Chromatogr. 455: 376-381. https://doi.org/10.1016/S0021-9673(01)82142-7
  21. Miller, G. L. 1959. Use of dinitrosalicyclic acid reagent for determining reducing sugars. Anal. Chem. 31: 426-429. https://doi.org/10.1021/ac60147a030
  22. Muhammad, R., P. Raheela, R. J. Muhammad, N. Habibullah, and H. R. Muhammad. 2007. Kinetic and thermodynamic properties of novel glucoamylase from Humicola sp. Enzyme Microb. Technol. 41: 558-564. https://doi.org/10.1016/j.enzmictec.2007.05.010
  23. Naidu, G. S. N. and T. Panda. 2003. Studies on pH and thermal deactivation of pectolytic enzymes from Aspergillus niger. Biochem. Eng. J. 16: 57-67. https://doi.org/10.1016/S1369-703X(03)00022-6
  24. Nasuno, S. and M. P. Starr. 1966. Polygalacturonase of Erwinia carotovora. J. Biol. Chem. 241: 5298-5306.
  25. Ortega, N., S. de Diego, M. Perez-Mateos, and M. D. Busto. 2004. Kinetic properties and thermal behavior of polygalacturonase used in fruit juice clarification. Food Chem. 88: 209-217. https://doi.org/10.1016/j.foodchem.2004.01.035
  26. Palomares, L. and G. Préstamo. 2005. Detection of peroxidase activity in two-dimensional gel electrophoresis. Eur. Food Res. Technol. 220: 644-647. https://doi.org/10.1007/s00217-005-1132-5
  27. Richardson, T. and D. B. Hyslop. 1985. Enzymes, pp. 408-411. In O. R. Fennema (ed.). Food Chemistry. Marcel Dekker Inc., New York.
  28. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbour Laboratory Press, New York.
  29. Seo, S. T., N. Furuya, C. K. Lim, Y. Takanami, and K. Tsuchiya. 2002. Phenotypic and genetic diversity of Erwinia carotovora ssp. carotovora strains from Asia. J. Phytopathol. 150: 120-127. https://doi.org/10.1046/j.1439-0434.2002.00722.x
  30. Shau-ping, L., L. Hun-chi, L. Hefèrnan, and G. Wilcox. 1985. Evidence that polygalacturonase is a virulence determinant in Erwinia carotovora. J. Bacteriol. 164: 831-835.
  31. Siddiqui, K. S., M. J. Azhar, M. H. Rashid, and M. I. Rajoka. 1996. Activity and thermostability of carboxymethylcellulase from Aspergillus niger is strongly influenced by non-covalently attached polysaccharides. World J. Microbiol. Biotechnol. 12: 213-216. https://doi.org/10.1007/BF00360917
  32. Srinivas, R. and T. Panda. 1999. Enhancing the feasibility of many biotechnological processes through enzyme deactivation studies. Bioprocess Eng. 21: 363-369. https://doi.org/10.1007/s004490050688
  33. Tari, C., N. Dogan, and N. Gogus. 2008. Biochemical and thermal characterization of crude exo-polygalacturonase produced by Aspergillus sojae. Food Chem. 111: 824-829. https://doi.org/10.1016/j.foodchem.2008.04.056
  34. Violet, M. and J. C. Meunier. 1989. Kinetic study of the irreversible thermal denaturation of Bacillus licheniformis $\alpha$-amylase. Biochem. J. 263: 665-670.

Cited by

  1. Characterization and differentiation of soft rot causing Pectobacterium carotovorum of Indian origin vol.136, pp.1, 2010, https://doi.org/10.1007/s10658-012-0140-0
  2. Characterization, Kinetic, and Thermodynamic Studies of Marine Pectinase FromBacillus subtilis vol.45, pp.3, 2010, https://doi.org/10.1080/10826068.2014.907181
  3. Interference of Quorum Sensing by Delftia sp. VM4 Depends on the Activity of a Novel N -Acylhomoserine Lactone-Acylase vol.10, pp.9, 2010, https://doi.org/10.1371/journal.pone.0138034
  4. Kinetic studies on exploring lactose hydrolysis potential of β galactosidase extracted from Lactobacillus plantarum HF571129 vol.52, pp.10, 2010, https://doi.org/10.1007/s13197-015-1729-z
  5. Improvement of Thermal Stability of C‐Phycocyanin by Nanofiber and Preservative Agents vol.40, pp.6, 2016, https://doi.org/10.1111/jfpp.12711
  6. Biochemical Characterization, Thermal Stability, and Partial Sequence of a Novel Exo-Polygalacturonase from the Thermophilic Fungus Rhizomucor pusillus A13.36 Obtained by Submerged Cultivation vol.2016, pp.None, 2010, https://doi.org/10.1155/2016/8653583
  7. Characterization of an Exopolygalacturonase from <i>Leucoagaricus gongylophorus</i>, the Symbiotic Fungus of <i>Atta sexdens</i> vol.4, pp.1, 2010, https://doi.org/10.4236/aer.2016.41002
  8. Molecular and biochemical characterization of recombinant cel12B, cel8C, and peh28 overexpressed in Escherichia coli and their potential in biofuel production vol.10, pp.None, 2010, https://doi.org/10.1186/s13068-017-0732-1
  9. Purification, biochemical, and thermal properties of fibrinolytic enzyme secreted by Bacillus cereus SRM-001 vol.48, pp.1, 2010, https://doi.org/10.1080/10826068.2017.1387560
  10. Physicochemical characterization of pectinase activity from Bacillus spp. and their accessory role in synergism with crude xylanase and commercial cellulase in enzyme cocktail mediated saccharificatio vol.124, pp.5, 2018, https://doi.org/10.1111/jam.13718
  11. An Arabidopsis berberine bridge enzyme‐like protein specifically oxidizes cellulose oligomers and plays a role in immunity vol.98, pp.3, 2019, https://doi.org/10.1111/tpj.14237
  12. PEGylation as an efficient tool to enhance cytochrome c thermostability: a kinetic and thermodynamic study vol.7, pp.28, 2010, https://doi.org/10.1039/c9tb00590k
  13. Stability and Thermodynamic Attributes of Starch Hydrolyzing α‐Amylase of Anoxybacillus rupiensis TS‐4 vol.72, pp.1, 2010, https://doi.org/10.1002/star.201900105
  14. From Secretion in Pichia pastoris to Application in Apple Juice Processing: Exo-Polygalacturonase from Sporothrix schenckii 1099-18 vol.28, pp.None, 2010, https://doi.org/10.2174/1871530321666210106110400