DOI QR코드

DOI QR Code

Differential Gene Expression in the Pathogenic Strains of Actinobacillus pleuropneumoniae Serotypes 1 and 3

  • Xie, Fang (College of Animal Science and Veterinary Medicine, Jinlin University) ;
  • Zhang, Mingjun (College of Animal Science and Veterinary Medicine, Jinlin University) ;
  • Li, Shuqing (Shanghai Entry-Exit Inspection and Quarantine Bureau of the People's Republic of China) ;
  • Du, Chongtao (College of Animal Science and Veterinary Medicine, Jinlin University) ;
  • Sun, Changjiang (College of Animal Science and Veterinary Medicine, Jinlin University) ;
  • Han, Wenyu (College of Animal Science and Veterinary Medicine, Jinlin University) ;
  • Zhou, Liang (College of Animal Science and Veterinary Medicine, Jinlin University) ;
  • Lei, Liancheng (College of Animal Science and Veterinary Medicine, Jinlin University)
  • Received : 2009.10.24
  • Accepted : 2009.11.29
  • Published : 2010.04.28

Abstract

The limited information on differential gene expression in the different serotypes of Actinobacillus pleuropneumoniae has significantly hampered the research on the pathogenic mechanisms of this organism and the development of multivalent vaccines against A. pleuropneumoniae infection. To compare the gene expressions in the A. pleuropneumoniae strains CVCC259 (serotype 1) and CVCC261 (serotype 3), we screened the differentially expressed genes in the two strains by performing representational difference analysis (RDA). Northern blot analyses were used to confirm the results of RDA. We identified 22 differentially expressed genes in the CVCC259 strain and 20 differentially expressed genes in the CVCC261 strain, and these genes were classified into 11 groups: (1) genes encoding APX toxins; (2) genes encoding transferrin-binding protein; (3) genes involved in lipopolysaccharide (LPS) biosynthesis; (4) genes encoding autotransporter adhesin; (5) genes involved in metabolism; (6) genes involved in the ATP-binding cassette (ABC) transporter system; (7) genes encoding molecular chaperones; (8) genes involved in bacterial transcription and nucleic acid metabolism; (9) a gene encoding protease; (10) genes encoding lipoprotein/membrane protein; and (11) genes encoding various hypothetical proteins. This is the first report on the systematic application of RDA for the analysis of differential gene expression in A. pleuropneumoniae serotypes 1 and 3. The determination of these differentially expressed genes will serve as an indicator for future research on the pathogenic mechanisms of A. pleuropneumoniae and the development of a multivalent vaccine against A. pleuropneumoniae infection.

Keywords

References

  1. Baeza, L. C., A. M. Bailao, C. L. Borges, M. Pereira, C. M. Soares, and M. J. Mendes Giannini. 2007. cDNA representational difference analysis used in the identification of genes expressed by Trichophyton rubrum during contact with keratin. Microbes Infect. 9: 1415-1421. https://doi.org/10.1016/j.micinf.2007.07.005
  2. Banerjee, A. and I. Biswas. 2008. Markerless multiple-genedeletion system for Streptococcus mutans. Appl. Environ. Microbiol. 74: 2037-2042. https://doi.org/10.1128/AEM.02346-07
  3. Blackall, P. J., H. L. Klaasen, H. van den Bosch, P. Kuhnert, and J. Frey. 2002. Proposal of a new serovar of Actinobacillus pleuropneumoniae: Serovar 15. Vet. Microbiol. 84: 47-52. https://doi.org/10.1016/S0378-1135(01)00428-X
  4. Bosse, J. T., H. Janson, B. J. Sheehan, A. J. Beddek, A. N. Rycroft, J. S. Kroll, and P. R. Langford. 2002. Actinobacillus pleuropneumoniae: Pathobiology and pathogenesis of infection. Microbes Infect. 4: 225-235. https://doi.org/10.1016/S1286-4579(01)01534-9
  5. Boyce, J. D., M. Harper, F. St. Michael, M. John, A. Aubry, H. Parnas, et al. 2009. Identification of novel glycosyltransferases required for assembly of the Pasteurella multocida A:1 lipopolysaccharide and their involvement in virulence. Infect. Immun. 77: 1532-1542. https://doi.org/10.1128/IAI.01144-08
  6. Butler, S. M., R. A. Festa, M. J. Pearce, and K. H. Darwin. 2006. Self-compartmentalized bacterial proteases and pathogenesis. Mol. Microbiol. 60: 553-562. https://doi.org/10.1111/j.1365-2958.2006.05128.x
  7. Cruijsen, T., L. A. van Leengoed, M. Ham-Hoffies, and J. H. Verheijden. 1995. Convalescent pigs are protected completely against infection with a homologous Actinobacillus pleuropneumoniae strain but incompletely against a heterologous-serotype strain. Infect. Immun. 63: 2341-2343.
  8. Davidson, A. L. and J. Chen. 2004. ATP-binding cassette transporters in bacteria. Annu. Rev. Biochem. 73: 241-268. https://doi.org/10.1146/annurev.biochem.73.011303.073626
  9. Forquin, M. P., A. Tazi, M. Rosa-Fraile, C. Poyart, P. Trieu-Cuot, and S. Dramsi. 2007. The putative glycosyltransferase-encoding gene cylJ and the group B Streptococcus (GBS)-specific gene cylK modulate hemolysin production and virulence of GBS. Infect. Immun. 75: 2063-2066. https://doi.org/10.1128/IAI.01565-06
  10. Frey, J. 1995. Virulence in Actinobacillus pleuropneumoniae and RTX toxins. Trends Microbiol. 3: 257-261. https://doi.org/10.1016/S0966-842X(00)88939-8
  11. Garmory, H. S. and R. W. Titball. 2004. ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infect. Immun. 72: 6757-6763. https://doi.org/10.1128/IAI.72.12.6757-6763.2004
  12. Gerlach, G. F., S. Klashinsky, C. Anderson, A. A. Potter, and P. J. Willson. 1992. Characterization of two genes encoding distinct transferrin-binding proteins in different Actinobacillus pleuropneumoniae isolates. Infect. Immun. 60: 3253-3261.
  13. Girard, V. and M. Mourez. 2006. Adhesion mediated by autotransporters of Gram-negative bacteria: Structural and functional features. Res. Microbiol. 157: 407-416. https://doi.org/10.1016/j.resmic.2006.02.001
  14. Guo, H., K. Lokko, Y. Zhang, W. Yi, Z. Wu, and P. G. Wang. 2006. Overexpression and characterization of Wzz of Escherichia coli O86:H2. Protein Expr. Purif. 48: 49-55. https://doi.org/10.1016/j.pep.2006.01.015
  15. Jacobsen, M. J., J. P. Nielsen, and R. Nielsen. 1996. Comparison of virulence of different Actinobacillus pleuropneumoniae serotypes and biotypes using an aerosol infection model. Vet. Microbiol. 49: 159-168. https://doi.org/10.1016/0378-1135(95)00184-0
  16. Jefferson, T., M. Rudin, and C. DiPietrantonj. 2003. Systematic review of the effects of pertussis vaccines in children. Vaccine 21: 2003-2014. https://doi.org/10.1016/S0264-410X(02)00770-3
  17. Jimenez, N., R. Canals, M. T. Salo, S. Vilches, S. Merino, and J. M. Tomas. 2008. The Aeromonas hydrophila $wb^{\ast}O34$ gene cluster: Genetics and temperature regulation. J. Bacteriol. 190: 4198-4209. https://doi.org/10.1128/JB.00153-08
  18. Kamp, E. M., N. Stockhofe-Zurwieden, L. A. van Leengoed, and M. A. Smits. 1997. Endobronchial inoculation with Apx toxins of Actinobacillus pleuropneumoniae leads to pleuropneumonia in pigs. Infect. Immun. 65: 4350-4354.
  19. Kleczka, B., A. C. Lamerz, G. van Zandbergen, A. Wenzel, R. Gerardy-Schahn, M. Wiese, and F. H. Routier. 2007. Targeted gene deletion of Leishmania major UDP-galactopyranose mutase leads to attenuated virulence. J. Biol. Chem. 282: 10498-10505. https://doi.org/10.1074/jbc.M700023200
  20. Lancashire, J. F., C. Turni, P. J. Blackall, and M. P. Jennings. 2007. Rapid and efficient screening of a representational difference analysis library using reverse Southern hybridisation: Identification of genetic differences between Haemophilus parasuis isolates. J. Microbiol. Methods 68: 326-330. https://doi.org/10.1016/j.mimet.2006.09.011
  21. Larue, K., M. S. Kimber, R. Ford, and C. Whitfield. 2009. Biochemical and structural analysis of bacterial O-antigen chain length regulator proteins reveals a conserved quaternary structure. J. Biol. Chem. 284: 7395-7403.
  22. Lei, L., C. Sun, S. Lu, X. Feng, J. Wang, and W. Han. 2008. Selection of serotype-specific vaccine candidate genes in Actinobacillus pleuropneumoniae and heterologous immunization with Propionibacterium acnes. Vaccine 26: 6274-6280. https://doi.org/10.1016/j.vaccine.2008.09.039
  23. Lemos, J. A. and R. A. Burne. 2002. Regulation and physiological significance of ClpC and ClpP in Streptococcus mutans. J. Bacteriol. 184: 6357-6366. https://doi.org/10.1128/JB.184.22.6357-6366.2002
  24. Lisitsyn, N. and M. Wigler. 1993. Cloning the differences between two complex genomes. Science 259: 946-951. https://doi.org/10.1126/science.8438152
  25. Maas, A., J. Meens, N. Baltes, I. Hennig-Pauka, and G. F. Gerlach. 2006. Development of a DIVA subunit vaccine against Actinobacillus pleuropneumoniae infection. Vaccine 24: 7226-7237. https://doi.org/10.1016/j.vaccine.2006.06.047
  26. Macinnes, J. I. and S. Rosendal. 1988. Prevention and control of Actinobacillus (Haemophilus) pleuropneumoniae infection in swine: A review. Can. Vet. J. 29: 572-574.
  27. Najdenski, H., E. Golkocheva, A. Vesselinova, J. A. Bengoechea, and M. Skurnik. 2003. Proper expression of the O-antigen of lipopolysaccharide is essential for the virulence of Yersinia enterocolitica O:8 in experimental oral infection of rabbits. FEMS Immunol. Med. Microbiol. 38: 97-106. https://doi.org/10.1016/S0928-8244(03)00183-4
  28. Nielsen, K. K. and M. Boye. 2005. Real-time quantitative reverse transcription-PCR analysis of expression stability of Actinobacillus pleuropneumoniae housekeeping genes during in vitro growth under iron-depleted conditions. Appl. Environ. Microbiol. 71: 2949-2954. https://doi.org/10.1128/AEM.71.6.2949-2954.2005
  29. O'Toole, G. A. and R. Kolter. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: A genetic analysis. Mol. Microbiol. 28: 449-461. https://doi.org/10.1046/j.1365-2958.1998.00797.x
  30. Pastorian, K., L. Hawel 3rd, and C. V. Byus. 2000. Optimization of cDNA representational difference analysis for the identification of differentially expressed mRNAs. Anal. Biochem. 283: 89-98. https://doi.org/10.1006/abio.2000.4622
  31. Ponte-Sucre, A. 2007. Availability and applications of ATP-binding cassette (ABC) transporter blockers. Appl. Microbiol. Biotechnol. 76: 279-286. https://doi.org/10.1007/s00253-007-1017-6
  32. Porankiewicz, J., J. Wang, and A. K. Clarke. 1999. New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. Mol. Microbiol. 32: 449-458. https://doi.org/10.1046/j.1365-2958.1999.01357.x
  33. Provost, M., J. Harel, J. Labrie, M. Sirois, and M. Jacques. 2003. Identification, cloning and characterization of rfaE of Actinobacillus pleuropneumoniae serotype 1, a gene involved in lipopolysaccharide inner-core biosynthesis. FEMS Microbiol. Lett. 223: 7-14. https://doi.org/10.1016/S0378-1097(03)00247-7
  34. Purins, L., L. Van Den Bosch, V. Richardson, and R. Morona. 2008. Coiled-coil regions play a role in the function of the Shigella flexneri O-antigen chain length regulator WzzpHS2. Microbiology 154: 1104-1116. https://doi.org/10.1099/mic.0.2007/014225-0
  35. Ramjeet, M., V. Deslandes, J. Goure, and M. Jacques. 2008. Actinobacillus pleuropneumoniae vaccines: From bacterins to new insights into vaccination strategies. Anim. Health Res. Rev. 9: 25-45. https://doi.org/10.1017/S1466252307001338
  36. Schmalhorst, P. S., S. Krappmann, W. Vervecken, M. Rohde, M. Muller, G. H. Braus, et al. 2008. Contribution of galactofuranose to the virulence of the opportunistic pathogen Aspergillus fumigatus. Eukaryot. Cell 7: 1268-1277. https://doi.org/10.1128/EC.00109-08
  37. Wang, C., M. Li, D. Dong, J. Wang, J. Ren, M. Otto, and Q. Gao. 2007. Role of ClpP in biofilm formation and virulence of Staphylococcus epidermidis. Microbes Infect. 9: 1376-1383. https://doi.org/10.1016/j.micinf.2007.06.012
  38. Xu, Z., Y. Zhou, L. Li, R. Zhou, S. Xiao, Y. Wan, et al. 2008. Genome biology of Actinobacillus pleuropneumoniae JL03, an isolate of serotype 3 prevalent in China. PLoS ONE 3: e1450. https://doi.org/10.1371/journal.pone.0001450
  39. Yu, A. Y. and W. A. Houry. 2007. ClpP: A distinctive family of cylindrical energy-dependent serine proteases. FEBS Lett. 581: 3749-3757. https://doi.org/10.1016/j.febslet.2007.04.076

Cited by

  1. Detection of Actinobacillus pleuropneumoniae in drinking water from pig farms vol.159, pp.3, 2010, https://doi.org/10.1099/mic.0.057992-0