DOI QR코드

DOI QR Code

Calcite-Forming Bacteria for Compressive Strength Improvement in Mortar

  • Park, Sung-Jin (School of Life Sciences, Kyungpook National University) ;
  • Park, Yu-Mi (School of Life Sciences, Kyungpook National University) ;
  • Chun, Woo-Young (School of Architecture and Architectural Engineering, Kyungpook National University) ;
  • Kim, Wha-Jung (School of Architecture and Architectural Engineering, Kyungpook National University) ;
  • Ghim, Sa-Youl (School of Life Sciences, Kyungpook National University)
  • Received : 2009.11.01
  • Accepted : 2009.11.30
  • Published : 2010.04.28

Abstract

Microbiological calcium carbonate precipitation (MCP) has been investigated for its ability to improve the compressive strength of mortar. However, very few studies have been conducted on the use of calcite-forming bacteria (CFB) to improve compressive strength. In this study, we discovered new bacterial genera that are capable of improving the compressive strength of mortar. We isolated 4 CFB from 7 environmental concrete structures. Using sequence analysis of the 16S rRNA genes, the CFB could be partially identified as Sporosarcina soli KNUC401, Bacillus massiliensis KNUC402, Arthrobacter crystallopoietes KNUC403, and Lysinibacillus fusiformis KNUC404. Crystal aggregates were apparent in the bacterial colonies grown on an agar medium. Stereomicroscopy, scanning electron microscopy, and X-ray diffraction analyses illustrated both the crystal growth and the crystalline structure of the $CaCO_3$ crystals. We used the isolates to improve the compressive strength of cement-sand mortar cubes and found that KNUC403 offered the best improvement in compressive strength.

Keywords

References

  1. Achal, V., A. Mukherjee, P. C. Basu, and M. S. Reddy. 2009. Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J. Ind. Microbiol. Biotechnol. 36: 981-988. https://doi.org/10.1007/s10295-009-0578-z
  2. American Public Health Association (APHA). 1989. Standard Methods for the Examination of Water and Wastewater, 17th Ed. American Public Health Association, Washington, DC.
  3. Bang, S. S., J. K. Galinat, and V. Ramakrishnan. 2001. Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microb. Technol. 28: 404-409. https://doi.org/10.1016/S0141-0229(00)00348-3
  4. Borman, A. H., E. W. de Jong, M. Huizinga, D. J. Kok, P. Westbroek, and L. Bosch. 1982. The role in $CaCO_3$ crystallization of an acid $Ca^{2+}$-binding polysaccharide associated with coccoliths of Emiliania huxleyi. Eur. J. Biochem. 129: 179-183. https://doi.org/10.1111/j.1432-1033.1982.tb07037.x
  5. Castanier, S., G. L. Metayer-Levrel, and J. P. Perthuisot. 1999. Ca-carbonates precipitation and limestone genesis - the microbiologist point of view. Sediment. Geol. 126: 9-23. https://doi.org/10.1016/S0037-0738(99)00028-7
  6. Chiara, B., G. Alessandro, M. Giorgio, R. Mila, T. Elena, and P. Brunella. 2007. Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J. Bacteriol. 189: 228-235. https://doi.org/10.1128/JB.01450-06
  7. De Muynck, W., D. Debrouwer, N. De Belie, and W. Verstraete. 2008. Bacterial carbonate precipitation improves the durability of cementitious materials. Cem. Concr. Res. 38: 1005-1014. https://doi.org/10.1016/j.cemconres.2008.03.005
  8. Douglas, S. and T. J. Beveridge. 1998. Mineral formation by bacteria in natural microbial communities. FEMS Microbiol. Ecol. 26: 79-88. https://doi.org/10.1111/j.1574-6941.1998.tb00494.x
  9. Edmund, B. 2003. Biomineralization of unicellular organisms: An unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angew. Chem. Int. Ed. 42: 614-641. https://doi.org/10.1002/anie.200390176
  10. Ghosh, P., S. Mandal, B. D. Chattopadhyay, and S. Pal. 2005. Use of microorganism to improve the strength of cement mortar. Cem. Concr. Res. 35: 1980-1983. https://doi.org/10.1016/j.cemconres.2005.03.005
  11. Ghosh, S., M. Biswas, B. D. Chattopadhya, and S. Mandal. 2009. Microbial activity on the microstructure of bacteria modified mortar. Cem. Concr. Compos. 31: 93-98. https://doi.org/10.1016/j.cemconcomp.2009.01.001
  12. Hammes, F., N. Boon, J. de Villiers, W. Verstraete, and S. D. Siciliano. 2003. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 69: 4901-4909. https://doi.org/10.1128/AEM.69.8.4901-4909.2003
  13. Ivan, S. and S. S. Branka. 2005. Influence of the primary structure of enzymes on the formation of $CaCO_3$ polymorphs: A comparison of plant (Canavalia ensiformis) and bacterial (Bacillus pasteurii) ureases. Langmuir 21: 8876-8882. https://doi.org/10.1021/la051129v
  14. Jhung, S. H., J. H. Lee, and J. S. Chang. 2008. Crystal size control of transition metal ion-incorporated aluminophosphate molecular sieves: Effect of ramping rate in the syntheses. Micropor. Mesopor. Mater. 112: 178-186. https://doi.org/10.1016/j.micromeso.2007.09.039
  15. Jonkheijm, P., P. van der Schoot, A.P.H.J. Schenning, and E. W. Meijer. 2006. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science 313: 80-83. https://doi.org/10.1126/science.1127884
  16. Kaluzynski, K., J. Pretula, and S. Penczek. 2007. Poly(ethylene glycol)-b-phosphorylated polyglycidols as $CaCO_3$ crystal growth modifiers. II. Macromolecular architecture versus the crystal size and shape and crystallization inhibition. J. Poly. Sci. A Polym. Chem. 45: 90-98. https://doi.org/10.1002/pola.21808
  17. Kawaguchi, H. and A. W. Decho. 2002. A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing $CaCO_3$ polymorphism. J. Cryst. Growth 240: 230-235. https://doi.org/10.1016/S0022-0248(02)00918-1
  18. Knorre, H. and W. Krumbein. 2000. Bacterial calcification, pp. 25-31. In R. E. Riding and S. M Awramik (eds.). Microbial Sediments. Springer-Verlag, Berlin, Germany.
  19. Marentette, J. M., J. E. Norwig, M. E. Stockelmann, and G. W. Wolfgang. 1997. Crystallization of $CaCO_3$ in the presence of PEO-block-PMAA copolymers. Adv. Mater. 9: 647-651. https://doi.org/10.1002/adma.19970090813
  20. Qiu, S., J. Yu, G. Zhu, O. Terasaki, Y. Nozue, W. Pang, and R. Xu. 1998. Strategies for the synthesis of large zeolite single crystals. Micropor. Mesopor. Mater. 21: 245-251. https://doi.org/10.1016/S1387-1811(98)00048-1
  21. Ramachandran, S. K., V. Ramakrishnan, and S. S. Bang. 2001. Remediation of concrete using micro-organisms. ACI Mater. J. 98: 3-9.
  22. Schultze-Lam, S., D. Fortin, B. S. Davis, and T. J. Beveridge. 1996. Mineralization of bacterial surfaces. Chem. Geol. 132: 171-181. https://doi.org/10.1016/S0009-2541(96)00053-8
  23. Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. Microbiological precipitation of $CaCO_3$. Soil Biol. Biochem. 31: 1563-1571. https://doi.org/10.1016/S0038-0717(99)00082-6
  24. Tiano, P., L. Biagiotti, and G. Mastromei. 1999. Bacterial bio-mediated calcite precipitation for monumental stones conservation: Methods of evaluation. J. Microbiol. Methods. 36: 139-145. https://doi.org/10.1016/S0167-7012(99)00019-6

Cited by

  1. Application of Alkaliphilic Biofilm-Forming Bacteria to Improve Compressive Strength of Cement-Sand Mortar vol.22, pp.3, 2010, https://doi.org/10.4014/jmb.1110.10009
  2. Application of Antifungal CFB to Increase the Durability of Cement Mortar vol.22, pp.7, 2010, https://doi.org/10.4014/jmb.1112.12027
  3. Application of Bacillus subtilis 168 as a Multifunctional Agent for Improvement of the Durability of Cement Mortar vol.22, pp.11, 2010, https://doi.org/10.4014/jmb.1202.02047
  4. Use of bacterial cell walls to improve the mechanical performance of concrete vol.39, pp.None, 2010, https://doi.org/10.1016/j.cemconcomp.2013.03.024
  5. Use of bacterial cell walls to improve the mechanical performance of concrete vol.39, pp.None, 2010, https://doi.org/10.1016/j.cemconcomp.2013.03.024
  6. Influence of Fungus on Properties of Concrete Made with Waste Foundry Sand vol.25, pp.4, 2010, https://doi.org/10.1061/(asce)mt.1943-5533.0000521
  7. Biomineralization of calcium carbonates and their engineered applications: a review vol.4, pp.None, 2010, https://doi.org/10.3389/fmicb.2013.00314
  8. Characterization of Three Antifungal Calcite-Forming Bacteria, Arthrobacter nicotianae KNUC2100, Bacillus thuringiensis KNUC2103, and Stenotrophomonas maltophilia KNUC2106, Derived from the Korean Isl vol.23, pp.9, 2010, https://doi.org/10.4014/jmb.1303.03085
  9. Characterization of Three Antifungal Calcite-Forming Bacteria, Arthrobacter nicotianae KNUC2100, Bacillus thuringiensis KNUC2103, and Stenotrophomonas maltophilia KNUC2106, Derived from the Korean Isl vol.23, pp.9, 2010, https://doi.org/10.4014/jmb.1303.03085
  10. Effects of Different Calcium Salts on Calcium Carbonate Crystal Formation by Sporosarcina pasteurii KCTC 3558 vol.18, pp.5, 2010, https://doi.org/10.1007/s12257-013-0030-0
  11. Enrichment of compressive strength in microbial cement mortar vol.26, pp.6, 2010, https://doi.org/10.1680/adcr.13.00053
  12. The Effects of Paenibacillus polymyxa E681 on Antifungal and Crack Remediation of Cement Paste vol.69, pp.4, 2010, https://doi.org/10.1007/s00284-014-0604-x
  13. Effect of Microorganism Sporosarcina pasteurii on the Hydration of Cement Paste vol.25, pp.8, 2015, https://doi.org/10.4014/jmb.1411.11037
  14. A potential biological approach for sustainable disposal of total dissolved solid of brine in civil infrastructure vol.76, pp.None, 2010, https://doi.org/10.1016/j.conbuildmat.2014.11.044
  15. 다기능 탄산칼슘 형성세균의 시멘트 건축물 적용위한 부식능 평가 및 건축물 정주미생물 중 방제 대상 결정 vol.25, pp.2, 2010, https://doi.org/10.5352/jls.2015.25.2.237
  16. A review of microbial precipitation for sustainable construction vol.93, pp.None, 2015, https://doi.org/10.1016/j.conbuildmat.2015.04.051
  17. Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability vol.100, pp.7, 2010, https://doi.org/10.1007/s00253-016-7370-6
  18. Investigation of the Properties of Sand Tubules, a Biomineralization Product, and their Microbial Community vol.26, pp.2, 2010, https://doi.org/10.4014/jmb.1508.08033
  19. Formations of calcium carbonate minerals by bacteria and its multiple applications vol.5, pp.1, 2010, https://doi.org/10.1186/s40064-016-1869-2
  20. Non-ureolytic calcium carbonate precipitation by Lysinibacillus sp. YS11 isolated from the rhizosphere of Miscanthus sacchariflorus vol.55, pp.6, 2010, https://doi.org/10.1007/s12275-017-7086-z
  21. Effect of Nonureolytic Bacteria on Engineering Properties of Cement Mortar vol.29, pp.6, 2010, https://doi.org/10.1061/(asce)mt.1943-5533.0001828
  22. Comparative process-based life-cycle assessment of bioconcrete and conventional concrete vol.15, pp.5, 2010, https://doi.org/10.1108/jedt-04-2017-0033
  23. Isolation and Potential Biocementation of Calcite Precipitation Inducing Bacteria from Colombian Buildings vol.75, pp.3, 2010, https://doi.org/10.1007/s00284-017-1373-0
  24. Soil bacteria that precipitate calcium carbonate: mechanism and applications of the process vol.67, pp.2, 2010, https://doi.org/10.15446/acag.v67n2.66109
  25. Subsurface Endospore-Forming Bacteria Possess Bio-Sealant Properties vol.8, pp.None, 2010, https://doi.org/10.1038/s41598-018-24730-3
  26. Bio-inspired self-healing cementitious mortar using Bacillus subtilis immobilized on nano-/micro-additives vol.30, pp.1, 2010, https://doi.org/10.1177/1045389x18806401
  27. Study on the Remediation of Cd Pollution by the Biomineralization of Urease-Producing Bacteria vol.16, pp.2, 2010, https://doi.org/10.3390/ijerph16020268
  28. An optimum condition of MICP indigenous bacteria with contaminated wastes of heavy metal vol.21, pp.2, 2010, https://doi.org/10.1007/s10163-018-0779-5
  29. Calcite formation induced by Ensifer adhaerens, Microbacterium testaceum, Paeniglutamicibacter kerguelensis, Pseudomonas protegens and Rheinheimera texasensis vol.112, pp.5, 2010, https://doi.org/10.1007/s10482-018-1204-8
  30. Bacterial Diversity Evolution in Maya Plaster and Stone Following a Bio-Conservation Treatment vol.11, pp.None, 2010, https://doi.org/10.3389/fmicb.2020.599144
  31. Bacterial Concrete as a Sustainable Building Material? vol.12, pp.2, 2010, https://doi.org/10.3390/su12020696
  32. Biotechnological approach for enhancing the properties of mortar using treated wastewater vol.173, pp.2, 2020, https://doi.org/10.1680/jensu.18.00050
  33. The promotion of magnesium ions on aragonite precipitation in MICP process vol.263, pp.None, 2020, https://doi.org/10.1016/j.conbuildmat.2020.120057
  34. Characterization of a Novel CaCO3-Forming Alkali-Tolerant Rhodococcus erythreus S26 as a Filling Agent for Repairing Concrete Cracks vol.26, pp.10, 2010, https://doi.org/10.3390/molecules26102967
  35. Isolation of alkaliphilic calcifying bacteria and their feasibility for enhanced CaCO 3 precipitation in bio‐based cementitious composites vol.14, pp.3, 2010, https://doi.org/10.1111/1751-7915.13752
  36. Isolation, Screening and Characterization of Ureolytic Bacteria from Cave Ornament vol.24, pp.9, 2010, https://doi.org/10.3923/pjbs.2021.939.943