DOI QR코드

DOI QR Code

Improvement of a Fungal Strain by Repeated and Sequential Mutagenesis and Optimization of Solid-State Fermentation for the Hyper-Production of Raw-Starch-Digesting Enzyme

  • Vu, Van Hanh (Institute of Biotechnology, Vietnamese Academy of Science and Technology) ;
  • Pham, Tuan Anh (Department of Bioscience and Biotechnology, The University of Suwon) ;
  • Kim, Keun (Department of Bioscience and Biotechnology, The University of Suwon)
  • Received : 2009.08.16
  • Accepted : 2009.12.09
  • Published : 2010.04.28

Abstract

A selected fungal strain, for production of the raw-starchdigesting enzyme by solid-state fermentation, was improved by two repeated sequential exposures to ${\gamma}$-irradiation of $Co^{60}$, ultraviolet, and four repeated treatments with Nmethyl-N'-nitrosoguanidine. The mutant strain Aspergillus sp. XN15 was chosen after a rigorous screening process, with its production of the raw-starch-digesting enzyme being twice that of usual wild varieties cultured under preoptimized conditions and in an unsupplemented medium. After 17 successive subculturings, the enzyme production of the mutant was stable. Optimal conditions for the production of the enzyme by solid-state fermentation, using wheat bran as the substrate, were accomplished for the mutant Aspergillus sp. XN15. With the optimal fermentation conditions, and a solid medium supplemented with nitrogen sources of 1% urea and 1% $NH_4NO_3$, 2.5 mM $CoSO_4$, 0.05% (v/w) Tween 80, and 1% glucose, the mutant Aspergillus sp. XN15 produced the raw-starch-digesting enzyme in quantities 19.4 times greater than a typical wild variety. Finally, XN15, through simultaneous saccharification and fermentation of a raw rice corn starch slurry, produced a high level of ethanol with $Y_{p/s}$ of 0.47 g/g.

Keywords

References

  1. Abe, J. I., F. W. Bergmam, K. Obata, and S. Hizukuri. 1988. Production of the raw starch digesting amylase of Aspergillus sp. K-27. Appl. Microbiol Biotechnol. 27: 447-450.
  2. Abu, E. A., S. A. Ado, and D. B. James. 2005. Raw starch degrading amylase production by mixed culture of Aspergillus niger and S. cerevisiae grown on sorghum pomace. Afr. J. Bioethanol. 4: 785-790.
  3. Anto, H., U. B. Trivedi, and K. C. Patel. 2006. Glucoamylase production by solid state fermentation using rice flask manufacturing waste products as substrate. Biores. Technol. 97: 1161-1166. https://doi.org/10.1016/j.biortech.2005.05.007
  4. Asgher, M., M. J. Asad, and R. L. Legge. 2006. Enhanced lignin peroxides synthesis by Phanerichaete chrysosporium in solid state bioprocessing of a lignocellulosic substrate. World J. Microbiol. Biotechnol. 22: 449-453. https://doi.org/10.1007/s11274-005-9055-7
  5. Babitha, S., R. S. Carlos, and A. Pandey. 2007. Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Biores. Technol. 98: 1554-1560. https://doi.org/10.1016/j.biortech.2006.06.005
  6. Bhatti, H. N., H. R. Mohammad, N. Rakhshanda, A. Muhammad, P. Raheela, and J. Abdul. 2007. Optimization of media for enhanced glucoamylase production in solid state fermentation by Fusarium solani. Food Technol. Biotechnol. 45: 51-56.
  7. Bertolin, T. E., W. Schmidell, A. E. Maiorano-Casara, and J. A. Costa. 2003. Influence of carbon, nitrogen and phosphorous source on glucoamylase production by Aspergillus niger in solid state fermentation. Z. Naturforsch. C. 58: 708-712.
  8. Chand, P., A. Aruna, A. M. Maqsood, and L. V. Rao. 2005. Novel mutation method for increased cellulase production. J. Appl. Microbiol. 98: 318-323. https://doi.org/10.1111/j.1365-2672.2004.02453.x
  9. Dhawan, S., R. Lal, and R. C. Kuhad. 2003. Ethidium bromide stimulated hyper laccase production from bird's nest fungus Cyathus bulleri. Lett. Appl. Microbiol. 36: 64-67. https://doi.org/10.1046/j.1472-765X.2003.01267.x
  10. Ellaiah, P., K. Adinarayana, Y. Bhavani, P. Padmaja, and B. Srinivasulu. 2002. Optimization of process parameters for glucoamylase production under solid state fermentation by a newly isolated Aspergillus species. Process Biochem. 38: 615-620. https://doi.org/10.1016/S0032-9592(02)00188-7
  11. Fang, X., S. Yano, H. Inoue, and S. Sawayama. 2009. Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. J. Biosci. Bioeng. 107: 256-261. https://doi.org/10.1016/j.jbiosc.2008.11.022
  12. Henry, T., P. C. Iwen, and S. H. Hinrichs. 2000. Identification of Aspergillus species using internal transcribed spacer regions 1 and 2. J. Clin. Microbiol. 38: 1510-1515.
  13. Kelly, C. T., M. A. McTigue, E. M. Doyle, and W. M. Fogarty. 1995. The raw starch degrading alkaline amylase of Bacillus sp. IMD 370. J. Ind. Microbiol. 15: 446-448. https://doi.org/10.1007/BF01569973
  14. Krishna, C. 2005. Solid-state fermentation systems - An Overview. Crit. Rev. Biotechnol. 25: 1-30. https://doi.org/10.1080/07388550590925383
  15. Kuhad, R. C., M. Kumar, and A. Singh. 1994. A hypercellulolytic mutant of Fusarium oxysporum. Lett. Appl. Microbiol. 19: 397-400. https://doi.org/10.1111/j.1472-765X.1994.tb00486.x
  16. Lonsane, B. K., N. P. Ghildyal, S. Budiatman, and S. V. Ramakrishna. 1985. Engineering aspects of solid state fermentation. Enz. Microb. Technol. 7: 258-265. https://doi.org/10.1016/0141-0229(85)90083-3
  17. Mahmmod, A., M. Airengzeb, R. Baig, and M. A. Ahmad. 1997. Production of amyloglucosidase by Aspergillus niger under different cultivation regimes. Pak. J. Biochem. Mol. Biol. 30: 49-54.
  18. Matsumoto, N., O. Fukushi, M. Miyanaga, K. Kakihara, E. Nakajima, and H. Yoshizumi. 1982. Industrialization of non-cooking system for alcoholic fermentation from grains. Agric. Biol. Chem. 18: 1549-1558.
  19. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  20. Nirmala, M. and G. Muralikrishna. 2003. Three amylases from malted finger millet (Ragi, Eleusine coracana, Indaf-15) - purification and partial characterization. Phytochemistry. 62: 21-30. https://doi.org/10.1016/S0031-9422(02)00443-0
  21. Omemu, A. M., I. Akpan, M. O. Bankole, and O. D. Teniola. 2005. Hydrolysis of raw tuber starches by amylase of Aspergillus niger AM07 isolated from the soil. Afr. J. Biotechnol. 4: 19-25.
  22. Pandey, A. 1992. Production of starch saccharifying enzyme (glucoamylase) in solid cultures. Starch 44: 75-77. https://doi.org/10.1002/star.19920440211
  23. Pandey, A. 1994. Solid-State Fermentation, pp. 12-17. Wiley Eastern Limited, New Delhi, India.
  24. Pandey, A. and S. Radhakrishnan. 1993. The production of glucoamylase by Aspergillus niger NCIM 1245. Process Biochem. 38: 305-309.
  25. Pandey, A., P. Nigam, C. R. Soccol, V. T. Soccol, D. Singh, and R. Mohan. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31: 135-152. https://doi.org/10.1042/BA19990073
  26. Parekh S., V. A. Vinci, and R. J. Strobel. 2000. Improvement of microbial strains and fermentation processes. Appl. Microbiol. Biotechnol. 54: 287-301. https://doi.org/10.1007/s002530000403
  27. Rajoka, M. I., A. Yasmin, and F. Latif. 2004. Kinetics of enhanced ethanol productivity using raw starch hydrolyzing glucoamylase from Aspergillus niger mutant produced in solid state fermentation. Lett. Appl. Microbiol. 39: 13-18. https://doi.org/10.1111/j.1472-765X.2004.01526.x
  28. Ramachandran, S., A. K. Patel, K. M. Nampoothiri, F. Francis, V. Nagy, G. Szakacs, and A. Pandey. 2004. Coconut oil cake - a potential raw material for the production of $\alpha$-amylase. Biores. Technol. 93: 169-174. https://doi.org/10.1016/j.biortech.2003.10.021
  29. Rubinder, K., B. S. Chadha, N. Singh, H. S. Saini, and S. Singh. 2002. Amylase hyperproduction by deregulated mutants of the thermophilic fungus Thermomyces lanuginosus. J. Ind. Microbiol. Biotechnol. 29: 70-74. https://doi.org/10.1038/sj.jim.7000270
  30. Silva, J. and R. Williams. 1993. The Biological Chemistry of the Elements. Clarendon Press, New York, U.S.A.
  31. Singh, A., A. B. Abidi, N. S. Darmwal, and A. K. Agrawal. 1991. Influence of nutritional factors of cellulase production from natural lignocellulosic residues by Aspergillus niger. Agric. Biol. Res. 7: 19-27.
  32. White, T. J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (eds.). PCR Protocols: A Guide to Methods and Applications. Academic Press, Inc., San Diego, California.
  33. Yamamoto, S. 1994. Raw starch-digesting enzyme (maltooligosaccharide producing type) of Zoogloea ramigera. J. Appl. Glycosci. 41: 283-289.

Cited by

  1. Improvement of Fungal Cellulase Production by Mutation and Optimization of Solid State Fermentation vol.39, pp.1, 2010, https://doi.org/10.4489/myco.2011.39.1.020
  2. Random mutagenesis and media optimisation for hyperproduction of cellulase fromBacillusspecies using proximally analysedSaccharum spontaneumin submerged fermentation vol.29, pp.4, 2010, https://doi.org/10.1080/14786419.2014.951355
  3. Efficient hydrolysis of raw starch and ethanol fermentation: a novel raw starch-digesting glucoamylase from Penicillium oxalicum vol.9, pp.None, 2010, https://doi.org/10.1186/s13068-016-0636-5
  4. Modulating Transcriptional Regulation of Plant Biomass Degrading Enzyme Networks for Rational Design of Industrial Fungal Strains vol.6, pp.None, 2010, https://doi.org/10.3389/fbioe.2018.00133
  5. Optimization of submerged culture conditions involving a developed fine powder solid seed for exopolysaccharide production by the medicinal mushroom Ganoderma lucidum vol.28, pp.4, 2010, https://doi.org/10.1007/s10068-018-0536-5
  6. Microbial citric acid: Production, properties, application, and future perspectives vol.2, pp.1, 2021, https://doi.org/10.1002/fft2.66
  7. Optimization of extracellular ethanol-tolerant β-glucosidase production from a newly isolated Aspergillus sp. DHE7 via solid state fermentation using jojoba meal as substrate: purification and bi vol.19, pp.1, 2010, https://doi.org/10.1186/s43141-021-00144-z