DOI QR코드

DOI QR Code

An Antiproliferative Ribonuclease from Fruiting Bodies of the Wild Mushroom Russula delica

  • Zhao, Shuang (State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University) ;
  • Zhao, Yong Chang (Institute of Biotechnology and Germplasmic Resource, Yunnan Academy of Agricultural Science) ;
  • Li, Shu Hong (Institute of Biotechnology and Germplasmic Resource, Yunnan Academy of Agricultural Science) ;
  • Zhang, Guo Qing (State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University) ;
  • Wang, He Xiang (State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University) ;
  • Ng, Tzi Bun (School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong)
  • Received : 2009.11.20
  • Accepted : 2009.12.25
  • Published : 2010.04.28

Abstract

An antiproliferative ribonuclease with a new N-terminal sequence was purified from fruiting bodies of the edible wild mushroom Russula delica in this study. This novel ribonuclease was unadsorbed on DEAE-cellulose, but absorbed on SP-Sepharose and Q-Sepharose. It had a molecular mass of 14 kDa, as judged by fast protein liquid chromatography on Superdex 75 and SDS-polyacrylamide gel electrophoresis. Its optimal pH and optimal temperature were pH 5 and $60^{\circ}C$, respectively. The ranking of its activity toward various polyhomoribonucleotides was poly C> poly G>poly A>poly U. It could inhibit proliferation of HepG2 and MCF-7 cancer cells with an $IC_50$ value of $8.6\;{\mu}M$ and $7.2\;{\mu}M$, respectively. It was devoid of antifungal and HIV-1 reverse transcriptase inhibitory activity.

Keywords

References

  1. Adinolfi, B. S., V. Cafaro, G. Dalessio, and A. Didonato. 1995. Full antitumor action of recombinant seminal ribonuclease depends on the removal of its N-terminal methionine. Biochem. Biophys. Res. Commun. 213: 525-532. https://doi.org/10.1006/bbrc.1995.2163
  2. Ardelt, W., K. Shogen, and Z. Darzynkiewicz. 2008. Onconase and amphinase, the antitumor ribonucleases from Rana pipiens oocytes. Curr. Pharm. Biotechnol. 9: 215-225. https://doi.org/10.2174/138920108784567245
  3. Brondz, I., K. Heiland, and D. Ekeberg. 2004. Multivariate analysis of fatty acids in spores of higher basidiomycetes: A new method for chemotaxonomical classification of fungi. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 800: 303-307. https://doi.org/10.1016/j.jchromb.2003.07.003
  4. Clericuzio, M., F. G. Han, F. S. Pan, and O. Sterner. 1998. The sesquiterpenoid contents of fruit bodies of Russula delica. Acta Chem. Scand. 52: 1333-1337. https://doi.org/10.3891/acta.chem.scand.52-1333
  5. Elmastas, M., O. Isildak, I. Turkekul, and N. Temur. 2007. Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. J. Food Compos. Anal. 20: 337-345. https://doi.org/10.1016/j.jfca.2006.07.003
  6. Giollan, M., J. Guillot, M. Damez, M. Dusser, P. Didier, and E. Didier. 1993. Characterization of a lectin from Lactarius deterrimus (research on the possible involvement of the fungal lectin in recognition between mushroom and spruce during the early stages of mycorrhizae formation). Plant Physiol. 101: 513-522.
  7. Girlanda, M., M. A. Selosse, D. Cafasso F. Brilli, S. Delfine, R. Fabbian, et al. 2006. Inefficient photosynthesis in the Mediterranean orchid Limodorum abortivum is mirrored by specific association to ectomycorrhizal Russulaceae. Mol. Ecol. 15: 491-504.
  8. Green, P. G. 1994. The ribonucleases of higher-plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 421-445. https://doi.org/10.1146/annurev.pp.45.060194.002225
  9. Guan, G. P., H. X. Wang, and T. B. Ng. 2007. A novel ribonuclease with antiproliferative activity from fresh fruiting bodies of the edible mushroom Hypsizigus marmoreus. Biochim. Biophys. Acta 1770: 1593-1597. https://doi.org/10.1016/j.bbagen.2007.07.014
  10. Guillot, J., M. Giollant, M. Damez, and M. Dusser. 1991. Isolation and characterization of a lectin from the mushroom, Lactarius deliciosus. J. Biochem. 109: 840-845.
  11. Hofsteenge, J., R. Matthies, and S. R. Stone. 1989. Primary structure of a ribonuclease from porcine liver, a new member of the ribonuclease superfamily. Biochemistry 28: 9806-9813. https://doi.org/10.1021/bi00451a040
  12. Hon, C. C., T. Y. Lam, and Z. L. Shi. 2008. Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus. J. Virol. 82: 1819-1826. https://doi.org/10.1128/JVI.01926-07
  13. Iwama, M., A. Sanda, K. Ohgi, J. Hofsteenge, and M. Irie. 1993. Purification and primary structure of a porcine kidney nonsecretory ribonuclease. Biosci. Biotechnol. Biochem. 57: 2133-2138. https://doi.org/10.1271/bbb.57.2133
  14. Laemmli, U. K. and M. Favre. 1973. Maturation of the head of bacteriophage T4. J. Mol. Biol. 80: 575-599. https://doi.org/10.1016/0022-2836(73)90198-8
  15. Lam, S. K. and T. B. Ng. 2001. Isolation of a novel thermolabile heterodimeric ribonuclease with antifungal and antiproliferative activities from roots of the sanchi ginseng Panax notoginseng. Biochem. Biophys. Res. Commun. 285: 419-423. https://doi.org/10.1006/bbrc.2001.5193
  16. Matousek, J., J. Soucek, J. Riha, T. R. Zankel, and S. A. Benner. 1995. Immunosuppressive activity of angiogenin in comparison with bovine seminal ribonuclease and pancreatic ribonuclease. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 112: 235-241. https://doi.org/10.1016/0305-0491(95)00075-5
  17. Mekkriengkrai, D., T. Sando, K. Hirooka, J Sakdapipanich , Y. Tanaka, E. Fukusaki, and A. Kobayashi. 2004. Cloning and characterization of farnesyl diphosphate synthase from the rubber-producing mushroom Lactarius chrysorrheus. Biosci. Biotechnol. Biochem. 68: 2360-2368. https://doi.org/10.1271/bbb.68.2360
  18. Mock, J. W. Y., T. B. Ng, R. N. S. Wong, Q. Z. Yao, H. W. Yeung, and W. P. Fong. 1996. Demonstration of ribonuclease activity in the plant ribosome-inactivating proteins alpha- and beta-momorcharins. Life Sci. 59: 1853-1859. https://doi.org/10.1016/S0024-3205(96)00532-2
  19. Mossakowska, D. E., K. Nyberg, and A. R. Fersht. 1989. Kinetic characterization of the recombinant ribonuclease from Bacillus amyloliquefaciens (Barnase) and investigation of key residues in catalysis by site-directed mutagenesis. Biochemistry 28: 3843-3850. https://doi.org/10.1021/bi00435a033
  20. Ngai, P. H. K., H. X. Wang, and T. B. Ng. 2003. Purification and characterization of a ubiquitin-like peptide with macrophage stimulating, antiproliferative and ribonuclease activities from the mushroom Agrocybe cylindracea. Peptides 24: 639-645. https://doi.org/10.1016/S0196-9781(03)00136-0
  21. Ngai, P. H. K. and T. B. Ng. 2004. A ribonuclease with antimicrobial, antimitogenic and antiproliferative activities from the edible mushroom Pleurotus sajor-caju. Peptides 25: 11-17. https://doi.org/10.1016/j.peptides.2003.11.012
  22. Ng, T. B. and H. X. Wang. 2004. Flammin and velin: New ribosome inactivating polypeptides from the mushroom Flammulina velutipes. Peptides 25: 929-933. https://doi.org/10.1016/j.peptides.2004.03.007
  23. Ng, T. B. and H. X. Wang. 2004. A novel ribonuclease from fruiting bodies of the common edible mushroom Pleurotus eryngii. Peptides 25: 1365-1368. https://doi.org/10.1016/j.peptides.2004.01.027
  24. Panchak, L. V. and V. O. Antoniuk. 2007. Purification of lectin from fruiting bodies of Lactarius rufus (Scop.: Fr.)Fr. and its carbohydrate specificity. Ukr. Biokhim. Zh. 79: 123-128.
  25. Sasso, M. P., A. Carsana, E. Confalone, C. Cosi, S. Sorrentino, M. Viola, M. Palmieri, E. Russo, and A. Furia. 1991. Molecular-cloning of the gene encoding the bovine brain ribonuclease and its expression in different regions of the brain. Nucleic Acids Res. 19: 6469-6474. https://doi.org/10.1093/nar/19.23.6469
  26. Sychrova, H., M. Ticha, and J. Kocourek. 1985. Studies on lectins. LIX. Isolation and properties of lectins from fruiting bodies of Xerocomus chrysenteron and Lactarius lignyotus. Can. J. Biochem. Cell Biol. 63: 700-704. https://doi.org/10.1139/o85-087
  27. Wang, H. X., S. S. Lam, and T. B. Ng. 1998. Purification and characterization of novel ribosome inactivating proteins, alphaand beta-pisavins, from seeds of the garden pea Pisum sativum. Biochem. Biophys. Res. Commun. 235: 135-142.
  28. Wang, H. X. and T. B. Ng. 1999. Isolation of a new ribonuclease from fresh fruiting bodies of the straw mushroom. Biochem. Biophys. Res. Commun. 264: 714-718. https://doi.org/10.1006/bbrc.1999.1571
  29. Wang, H. X. and T. B. Ng. 2000. Isolation of a novel ubiquitin-like protein from Pleurotus ostreatus mushroom with anti-human immunodeficiency virus, translation-inhibitory, and ribonuclease activities. Biochem. Biophys. Res. Commun. 276: 587-593. https://doi.org/10.1006/bbrc.2000.3540
  30. Wang, H. X. and T. B. Ng. 2000. Quinqueginsin, a novel protein with anti-human immunodeficiency virus, antifungal, ribonuclease and cell-free translation-inhibitory activities from American ginseng roots. Biochem. Biophys. Res. Commun. 269: 203-208. https://doi.org/10.1006/bbrc.2000.2114
  31. Wang, H. X. and T. B. Ng. 2001. Purification and characterization of a potent homodimeric guanine-specific ribonuclease from fresh mushroom (Pleurotus tuber-regium) sclerotia. Int. J. Biochem. Cell Biol. 33: 483-490. https://doi.org/10.1016/S1357-2725(01)00038-3
  32. Wang, H. X. and T. B. Ng. 2004. A new ribonuclease from the black oyster mushroom Pleurotus ostreatus. Peptides 25: 685-687. https://doi.org/10.1016/j.peptides.2004.01.017
  33. Wang, H. X. and T. B. Ng. 2003. A novel ribonuclease from the veiled lady mushroom Dictyophora indusiata. Biochem. Cell Biol. 81: 373-377. https://doi.org/10.1139/o03-067
  34. Wang, H. X. and T. B. Ng. 2003. A ribonuclease with distinctive features from the wild green-headed mushroom Russulus virescens. Biochem. Biophys. Res. Commun. 312: 965-968. https://doi.org/10.1016/j.bbrc.2003.10.201
  35. Wang, H. X. and T. B. Ng. 2004. Isolation of a new ribonuclease from fruiting bodies of the silver plate mushroom Clitocybe maxima. Peptides 25: 935-939. https://doi.org/10.1016/j.peptides.2004.03.008
  36. Wang, H. X. and T. B. Ng. 2004. Purification of a novel ribonuclease from dried fruiting bodies of the edible wild mushroom Thelephora ganbajun. Biochem. Biophys. Res. Commun. 324: 855-859. https://doi.org/10.1016/j.bbrc.2004.09.132
  37. Wang, H. X. and T. B. Ng. 2006. A novel ribonuclease from fresh fruiting bodies of the portabella mushroom Agaricus bisporus. Biochem. Cell Biol. 84: 178-183. https://doi.org/10.1139/o06-033
  38. Wang, J. B., H. X. Wang, and T. B. Ng. 2007. A peptide with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Russula paludosa. Peptides 28: 560-565. https://doi.org/10.1016/j.peptides.2006.10.004
  39. Wong, J. H. and T. B. Ng. 2005. Lunatusin, a trypsin-stable antimicrobial peptide from lima beans (Phaseolus lunatus L.). Peptides 26: 2086-2092. https://doi.org/10.1016/j.peptides.2005.03.004
  40. Ye, X. Y. and T. B. Ng. 2002. A novel and potent ribonuclease from fruiting bodies of the mushroom Pleurotus pulmonarius. Biochem. Biophys. Res. Commun. 293: 857-861. https://doi.org/10.1016/S0006-291X(02)00301-7
  41. Zheng, S. Y., C. X. Li, T. B. Ng, and H. X. Wang. 2007. A lectin with mitogenic activity from the edible wild mushroom Boletus edulis. Process Biochem. 42: 1620-1624. https://doi.org/10.1016/j.procbio.2007.09.004

Cited by

  1. Biochemical characterization of the RNA-hydrolytic activity of a pumpkin 2S albumin vol.584, pp.18, 2010, https://doi.org/10.1016/j.febslet.2010.08.041
  2. A Novel Ribonuclease with Potent HIV-1 Reverse Transcriptase Inhibitory Activity from Cultured Mushroom Schizophyllum commune vol.49, pp.5, 2010, https://doi.org/10.1007/s12275-011-1098-x
  3. Ribonucleases of different origins with a wide spectrum of medicinal applications vol.1815, pp.1, 2010, https://doi.org/10.1016/j.bbcan.2010.09.001
  4. Purification and characterization of a novel RNase with antiproliferative activity from the mushroom Lactarius flavidulus vol.65, pp.2, 2012, https://doi.org/10.1038/ja.2011.112
  5. First biochemical characterization of a novel ribonuclease from wild mushroom Amanita hemibapha vol.1, pp.1, 2010, https://doi.org/10.1186/2193-1801-1-79
  6. A novel anti-lymphoma protein RE26 from Rozites emodensis (Berk.) Moser vol.93, pp.3, 2010, https://doi.org/10.1007/s00253-011-3450-9
  7. A Novel Ribonuclease with HIV-1 Reverse Transcriptase Inhibitory Activity from the Edible Mushroom Hygrophorus russula vol.170, pp.1, 2010, https://doi.org/10.1007/s12010-013-0180-8
  8. An alkaline thermostable recombinant Humicola grisea var. thermoidea cellobiohydrolase presents bifunctional (endo/exoglucanase) activity on cellulosic substrates vol.29, pp.1, 2010, https://doi.org/10.1007/s11274-012-1153-8
  9. Purification and characterization of a ribonuclease with antiproliferative activity from the mystical wild mushroom Tuber indicum vol.54, pp.suppl1, 2010, https://doi.org/10.1002/jobm.201300018
  10. A novel ribonuclease with antiproliferative activity toward leukemia and lymphoma cells and HIV-1 reverse transcriptase inhibitory activity from the mushroom, Hohenbuehelia serotina vol.33, pp.1, 2014, https://doi.org/10.3892/ijmm.2013.1553
  11. An optimized intein-mediated protein ligation approach for the efficient cyclization of cysteine-rich proteins vol.27, pp.12, 2014, https://doi.org/10.1093/protein/gzu048
  12. Isolation of a Ribonuclease with Antiproliferative and HIV-1 Reverse Transcriptase Inhibitory Activities from Japanese Large Brown Buckwheat Seeds vol.175, pp.5, 2010, https://doi.org/10.1007/s12010-014-1438-5
  13. A novel ribonuclease with HIV‐1 reverse transcriptase inhibitory activity purified from the fungus Ramaria formosa vol.55, pp.2, 2010, https://doi.org/10.1002/jobm.201300876
  14. A Ribonuclease Isolated from Wild Ganoderma Lucidum Suppressed Autophagy and Triggered Apoptosis in Colorectal Cancer Cells vol.7, pp.None, 2010, https://doi.org/10.3389/fphar.2016.00217
  15. Purification and characterization of a novel ubiquitin-like antitumour protein with hemagglutinating and deoxyribonuclease activities from the edible mushroom Ramaria botrytis vol.7, pp.1, 2017, https://doi.org/10.1186/s13568-017-0346-9
  16. Comparative transcriptome analysis of dikaryotic mycelia and mature fruiting bodies in the edible mushroom Lentinula edodes vol.8, pp.None, 2010, https://doi.org/10.1038/s41598-018-27318-z
  17. Research Progress of Bioactive Proteins from the Edible and Medicinal Mushrooms vol.20, pp.3, 2010, https://doi.org/10.2174/1389203719666180613090710