바이러스 안전성이 보증된 무세포 소 양막 생물창상피복재 제조 공정 개발

Process Development of a Virally-Safe Acellular Bovine Amniotic Membrane for Biological Dressing

  • 배정은 (한남대학교 생명.나노과학대학 생명과학과 & 바이오의약품안전성검증센터) ;
  • 김찬경 (한남대학교 생명.나노과학대학 생명과학과 & 바이오의약품안전성검증센터) ;
  • 김성포 ((주)바이오랜드 조직공학연구소) ;
  • 양은경 ((주)바이오랜드 조직공학연구소) ;
  • 김인섭 (한남대학교 생명.나노과학대학 생명과학과 & 바이오의약품안전성검증센터)
  • Bae, Jung-Eun (Department of Biological Sciences & Center for Biopharmaceuticals Safety validation, Hannam University) ;
  • Kim, Chang-Kyong (Department of Biological Sciences & Center for Biopharmaceuticals Safety validation, Hannam University) ;
  • Kim, Sung-Po (R&D Center, Bioland Co. Ltd.) ;
  • Yang, Eun-Kyung (R&D Center, Bioland Co. Ltd.) ;
  • Kim, In-Seop (Department of Biological Sciences & Center for Biopharmaceuticals Safety validation, Hannam University)
  • 투고 : 2010.11.16
  • 심사 : 2010.11.23
  • 발행 : 2010.12.28

초록

바이러스 안전성이 보증된 무세포 소 양막 생물창상피복재 제조공정을 확립하고자 하였다. 기질세포를 제거하기 위해 효소(트립신)를 처리하는 공정과 바이러스를 불활화하기 위해 70% 에탄올, 0.05% sodium hypochlorite, 25 kGy 감마선 처리 공정을 포함하는 무세포 소 양막 제조공정을 확립하였다. 무세포 소 양막의 조직학적 분석과 전자현미경 분석 결과 면역거부반응을 일으킬 수 있는 상피층과 기질세포들이 잘 제거되었으며, 소 양막 콜라겐 섬유의 3차원적 구조가 잘 유지되어 있음을 확인하였다. 또한 상처치유효과가 있는 EGF, KGF, FGF와 같은 성장인자를 포함하고 있었다. 바이러스 불활화 효과를 검증하기 위해 국제적 가이드에 따라 4종의 바이러스(BHV, BVDV, BPIV-3, BPV)를 생물학적 지표로 사용하여 소 양막에 각 생물학적 지표를 첨가한 후각 바이러스 불활화 공정을 실시한 다음 각 바이러스를 회수하여 정량한 후 불활화 정도를 비교하였다. 24시간 70% 에탄올 처리 공정에서 BHV, BVDV, BPIV-3, BPV 모두 처리 시간 1시간 안에 검출한계 이하로 완벽하게 불활화되었다. 30분 0.05% sodium hypochlorite 처리 공정에서 BHV, BVDV, BPIV-3 같은 외피 바이러스는 BPV 같은 비-외피 바이러스에 비해 효과적으로 불활화되었다. 25 kGy 감마선 조사에 의해 BHV, BVDV, BPIV-3는 검출한계 이하로 완벽하게 불활화되었고, BPV도 효과적으로 불활화되었다. 3가지 바이러스 불활화 공정에서 BHV, BVDV, BPIV-3, BPV에 대한 log 바이러스 감소인수 합은 각각 ${\geq}$13.30, ${\geq}$14.32, ${\geq}$15.22, ${\geq}$7.57이었다. 이와 같은 결과 본 연구를 통해 확립된 무세포 소 양막 제조공정은 바이러스 안전성을 보증할 수 있는 충분한 바이러스 불활화 능력을 갖고 있는 것으로 판단된다.

A process for manufacturing virally-safe bovine amniotic membrane(BAM) has been developed for biological dressing. BAM was harvested from a healthy bovine placenta, and then the epithelium was removed. The remaining stromal layer was consecutively disinfected with 70% ethanol and 0.05% sodium hypochlorite. The stromal layer was incubated in a decellularization solution containing 0.25%(w/v) trypsin to remove the cellular components. The resulting acelluar BAM was lyophilized to preserve its biochemical and structural integrity. The BAM was packed and exposed to 25 kGy of gamma irradiation for sterilization purpose. Histological, electron microscopical, and biochemical observations showed that the acellualr BAM had intact structural integrity of three dimensional collagen fibers and contained several growth factors, accelerating wound healing, such as EGF (Epidermal growth factor), KGF (Keratinocyte growth factor), and FGF (Fibroblast growth factor). Bovine herpes virus (BHV), bovine viral diarrhoea virus (BVDV), bovine parainfluenza virus type 3 (BPIV-3), and bovine parvovirus (BPV) were chosen as the biological indicators for validation of viral safety of the acellular BAM. Samples from relevant stages of the production process were spiked with each virus and subjected to viral inactivation processes. Viruses were recovered from the samples and then titrated immediately. All the viruses tested were completely inactivated to undetectable levels within 1 h of 70% ethanol treatment. Enveloped viruses such as BHV, BVDV, and BPIV-3 were more effectively inactivated than BPV by 0.05% sodium hypochlorite treatment. BHV, BVDV, and BPIV-3 were completely inactivated to undetectable levels by 25 kGy of gamma irradiation. Also BPV was effectively inactivated by 25 kGy of gamma irradiation. The cumulative log reduction factors of BHV, BVDV, BPIV-3, and BPV were ${\geq}$13.30, ${\geq}$14.32, ${\geq}$15.22, and ${\geq}$7.57, respectively. These results indicate that the production process for acelluar BAM has a sufficient virus-reducing capacity to achieve a high margin of the virus safety.

키워드

참고문헌

  1. Bae, J. E., J. Kim, J. Ahn, D. M. Choi, H. S. Jeong, D. H. Lee, and I. S. Kim. 2010. Virus inactivation process for manufacturing of human acellular dermal matrix. Kor. J. Microbiol. Biotechnol. 38: 168-176.
  2. Chen, K. C., B. C. Shull, E. A. Moses, M. Lederman, E. R. Stout, and R. C. Bates. 1986. Complete nucleotide sequence and genome organization of bovine parvovirus. J. Virol. 60: 1085-1097.
  3. Choi, Y. W. and I. S. Kim. 2008. Viral clearance during the manufacture of urokinase from human urine. Biotechnol. Bioprocess Eng. 13: 25-32. https://doi.org/10.1007/s12257-007-0140-7
  4. Collins, P. L., R. M. Chanock, and K. McIntosh. 1996. Parainfluenza Viruses, p. 1205. In B. N. Fields, D. M. Knipe, P. M. Howley, R. M. Chanock, J. L. Melnick, T. P. Monath, B. Roizman, and S. E. Straus, (ed.), Virology, vol. 1, Fields Lippincott-Raven Publishers, Philadelphia.
  5. Eastlund, T. 1995. Infectious disease transmission through cell, tissue, and organ transplantation: reducing the risk through donor selection. Cell Transplant. 4: 455-477. https://doi.org/10.1016/0963-6897(95)00035-V
  6. Erwin, D., P. Bijkerk, B. Rockx, A. de Groot, F. Twisk, and M. Koopmans. 2004. Inactivation of Caliciviruses. Appl. Environ. Microbiol. 70: 4538-4543. https://doi.org/10.1128/AEM.70.8.4538-4543.2004
  7. Gomes, J. A., A. Roman, M. S. Santos, and H. S. Dua. 2005. Amniotic membrane use in ophthalmology. Curr. Opin. Ophthalmol. 16: 233-240. https://doi.org/10.1097/01.icu.0000172827.31985.3a
  8. Goyal, R, S. M. Jones, M. Espinosa, V. Green, and K. K. Nischal. 2006. Amniotic membrane transplantation in children with symblepharon and massive pannus. Arch. Ophthalmol. 124: 1435-1440. https://doi.org/10.1001/archopht.124.10.1435
  9. Grieb, T. A., R.-Y. Forng, R. E. Stafford, J. Lin, J. Almeida, S. Bogdansky, C. Ronholdt, W. N. Drohan, and W. H. Burgess. 2005. Effective use of optimized, high-dose (50 kGy) gamma irradiation for pathogen inactivation of human bone allografts. Biomaterials 26: 2033–2042. https://doi.org/10.1016/j.biomaterials.2004.06.028
  10. Immelmann, A., K. Kellings, O. Stamm, and K. Tarrach. 2005. Validation and quality procedures for virua and prion removal in biopharmaceuticals. BioProcess Int. 3: 38-44.
  11. International organization for standardization. 1998. Sterilization of medical devices-Microbiological methods. Part 2: Test of sterility performed in the validation of a sterilization process. Geneva, Switzerland.
  12. International Organization for Standardization. 2002. Sterilization of health care products - Radiation sterilization – Substantiation of 25 kGy as a sterilization dose for small or infrequent production batches. Geneva, Switzerland.
  13. Karber, J. 1931. Beitrag zur kollectiven behandlung pharmakologische reihenversuche. Arch. Exp. Path. Pharmak. 162: 480-483. https://doi.org/10.1007/BF01863914
  14. Kim, I. S., Y. W. Choi, Y. Kang, H. M. Sung, K. W Sohn, and Y.-S. Kim. 2008. Improvement of virus safety of an antihemophilic factor IX by virus filtration process. J. Microbiol. Biotechnol. 18: 1317-1325.
  15. Kim, I. S., Y. W. Choi, Y. Kang, H. M. Sung, K. W. Sohn, and J. S. Shin. 2008. Dry-heat treatment process for enhancing viral safety of an antihemophilic factor VIII concentrate prepared from human plasma. J. Microbiol. Biotechnol. 18: 997-1003.
  16. Lavanchy, D. 2008. Hepatitis B virus transmission in organ, tissue, and cell transplantation. Gastroenterol. 135: 1041-1043. https://doi.org/10.1053/j.gastro.2008.08.028
  17. Lee, D. H., C. K. Kim, T. E. Kim, and I. S. Kim. 2008. Realtime RT-PCR for quantitative detection of bovine parainfluenza virus type 3 during the manufacture of biologics. Kor. J. Biotechnol. Bioeng. 36: 173-181.
  18. Lee, E.-Y., K.-W. Kim, and I.-W. Um. 2006. The review of transmission of infectious disease in human tissue transplantation: part I alloghenic bone. J. Kor. Assoc. Maxillofacial Plast. Reconst. Surg. 28: 365-370.
  19. Lee, E.-Y., K.-W. Kim, and I.-W. Um. 2007. The review of transmission of infectious disease in human tissue transplantation: phase II. allogenic soft tissue. J. Kor. Assoc. Maxillofacial Plast. Reconst. Surg. 29: 262-267.
  20. Lee, S. H. and S. C. Tseng. 1997. Amniotic membrane transplantation for persistent epithelial defects with ulceration. Am. J. Ophthalmol. 123: 303-312.
  21. McDonnell, G. and A. D. Russell. 1999. Antiseptics and disinfectants: activity, action, and resistance. Clin. Microbiol. Rev. 12: 147-179.
  22. McDonnell, G. E. 2007. Antisepsis, disinfection, and sterilization, pp. 32-54. ASM Press, American Society for Microbiology, Washington D.C., U.S.A.
  23. McDonnell, G. E. 2007. Antisepsis, disinfection, and sterilization, pp. 62-63. ASM Press, American Society for Microbiology, Washington D.C., U.S.A.
  24. Paridaens, D., H. Beekhuis, W. van den Bosch, L. Remeyer, and G. Melles 2001. Amniotic membrane transplantation in the management of conjunctival malignant melanoma and primary acquired melanosis with atypia. Br. J. Ophthalmol. 85: 658-661. https://doi.org/10.1136/bjo.85.6.658
  25. Park, M., S. Kim, I. S. Kim, and D. Son. 2008. Healing of a porcine burn wound dressed with human and bovine amniotic membranes. Wound Rep. Reg. 16: 520-528. https://doi.org/10.1111/j.1524-475X.2008.00399.x
  26. Pruss, A., M. Kao, T. Garrel, L. Frommelt, L. Gurtler, F. Benedix, and G. Pauli. 2003. Virus inactivation in bone tissue transplants (femoral heads) by moist heat with the 'Marburg bone bank system'. Biologicals 31: 75-82. https://doi.org/10.1016/S1045-1056(02)00095-7
  27. Resnick, L., K Veren, S. Z. Salahuddin, S. Tondreau, and P. D. Markham. 1986. Stability and inactivation of HTLV-III/ LAV under clinical and laboratory environments. J. Am. Med. Assoc. 255: 1887-1891. https://doi.org/10.1001/jama.255.14.1887
  28. Sangwan, V. S., S. Burman, S. Tejwani, S. P. Mahesh, and R. Murthy. 2007. Amniotic membrane transplantation: A review of current indications in the management of ophthalmic disorders. Curr. Ophthalmol. 55: 251-260.
  29. Warrener, P. and M. C. Collett. 1995. Pestivirus NS3(p80) protein possess RNA helicase activity. J. Virol. 69: 1720-1726.
  30. Whitebeck, J. C., L. J. Bello, and W. C. Lawrence. 1988. Comparison of the bovine herpesvirus 1 gI gene and the herpes simplex virus type 1 gB gene. J. Virol. 62: 3319-3327.