Characteristics of Chlorination Byproduct Formation of Synthetic Nitrogenous Compounds

합성유기질소 성분에서의 염소 소독부산물 생성 특성

  • Son, Hee-Jong (Water Quality Research Institute, Waterworks Headquarter, Busan) ;
  • Hwang, Young-Do (Water Quality Research Institute, Waterworks Headquarter, Busan) ;
  • Roh, Jae-Soon (Water Quality Research Institute, Waterworks Headquarter, Busan) ;
  • Bean, Jae-Hoon (Water Quality Research Institute, Waterworks Headquarter, Busan)
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 황영도 (부산광역시 상수도사업본부 수질연구소) ;
  • 노재순 (부산광역시 상수도사업본부 수질연구소) ;
  • 빈재훈 (부산광역시 상수도사업본부 수질연구소a)
  • Received : 2010.01.14
  • Accepted : 2010.04.08
  • Published : 2010.05.31

Abstract

This study was conducted to analyze and determine formation potentials for chlorination disinfection by-products (DBPs) from 14 synthetic nitrogen compounds with or without $Br^-$. 5 of 14 compounds were 3-aminobenzoic acid, 2-aminophenol, aniline, anthranilic acid and 4-nitroaniline that were relatively shown high for formation of THMs/DOC whether or not $Br^-$ presented. 6 compounds that were p-nitrophenol, 3-aminobenzoic acid, 2-aminophenol, aniline, anthranilic acid and 4-nitroaniline were shown high for formation of haloacetic acids (HAAs)/DOC whether or not $Br^-$ presented. Trichloroacetic acid (TCAA) was dominated in 6 compounds. The formation of haloacetonitriles (HANs)/DOC whether or not $Br^-$ presented was high in 3-aminobenzoic acid, 2-aminophenol, aniline and anthranilic acid. Specially, aniline was detected 14.6∼16.1 ${\mu}g/mg$. The formation of chloral hydrate (CH)/DOC and chloropicrin (CP)/DOC were shown high in 3-aminobenzoic acid and 2-aminophenol in 14 compounds. 6 compounds (3-aminobenzoic acid, 2-aminophenol, aniline, anthranilic acid, 4-nitroaniline, p-nitrophenol) and a commercial humic acid were tested for the formation of DBPs/DOC whether or not $Br^-$ presented. When $Br^-$ was added, the DBPs/DOC was higher for the order of aniline> anthranilic acid> 3-aminobenzoic acid> 4-nitroaniline> humic acid> p-nitrophenol> 2-aminophenol. And when $Br^-$ was not added, the DBPs/DOC was higher for the order of anthranilic acid> aniline> p-nitrophenol> humic acid> 4-nitroaniline> 3-aminobenzoic acid> 2-aminophenol.

14종의 합성유기질소 화합물들에서의 염소 소독부산물 생성 특성을 조사한 결과, 단위 DOC당 THM 생성능은 $Br^-$첨가 유무에 관계없이 3-aminobenzoic acid, 2-aminophenol, aniline, anthranilic acid 및 4-nitroaniline에서 높게 나타났다. 단위 DOC당 HAA 생성능 조사결과, $Br^-$ 첨가 유무에 관계없이 단위 DOC당 THM 생성능과 유사한 생성특성을 보였으나 특이하게 p-nitrophenol에서 가장 높은 생성능을 나타내었으며, 생성된 HAAFP의 대부분이 TCAAFP로 나타났다. 단위 DOC당 HAN 생성능은 3-aminobenzoic acid, 2-aminophenol, aniline 및 anthranilic acid에서 $Br^-$ 첨가 유무에 관계없이 높은 생성능을 나타내었고 다른 합성유기질소 화합물들에 비해 aniline에서 높은 생성능을 보였으며, 반응성이 높은 4종의 합성유기질소 화합물들에서 생성되는 HAN 구성종의 대부분은 DCAN으로 나타났다. 단위 DOC당 chloral hydrate와 chloropicrin의 생성능을 조사결과에서 3-aminobenzoic acid와 2-aminophenol에서 생성능이 높은 것으로 나타났고, 전체적으로 10 $mg/{\mu}g$ 이하의 비교적 낮은 생성능을 보였다. 염소 소독부산물 생성능이 높은 6종의 합성유기질소 화합물들과 시판 humic acid에서의 $Br^-$ 첨가 유무에 따른 단위 DOC 당 총 DBP 생성능을 조사한 결과에서 $Br^-$를 첨가한 경우는 anilin e> anthranilic acid> 3-aminobenzoic acid> 4-nitroaniline> humic acid> p-nitrophenol> 2-aminophenol 순으로 나타났고, $Br^-$를 첨가하지 않은 경우는 anthranilic acid> aniline> p-nitrophenol> humic acid> 4-nitroaniline> 3-aminobenzoic acid> 2-aminophenol 순으로 조사되었다. 또한, aniline, anthranilic acid, 4-nitroaniline 및 p-nitrophenol의 경우는 염소와의 반응성이 아주 높은 것으로 조사되었다.

Keywords

References

  1. Zavaleta, J. O., Hauchman, F. S. and Cox, M. W., "Epidemiology and toxicology of disinfection by-products," Formation and Control of Disinfection By-Products in Drinking Water, Singer, P. C.(Ed), American Water Works Association, Denver, pp. 95-117(1999).
  2. Craun, G. F., Bull, R. J., Clark, R. M., Doull, J., Grabow, W., Marsh, G. M., Okun, D. A., Regli, S., Sobsey, M. D. and Symons, J. M., "Balancing chemical and microbial risks of drinking water disinfection. part I. benefits and potential risks," Water Supply: Research & Technology-Aqua, 43, 192-199 (1994).
  3. Fawell, J., Robinson, D., Bull, R., Birnbaum, L., Boorman, G., Butterworth, B., Daniel, P., Galal-Gorchev, H., Hauchman, F., Julkunen, P., Klaassen, C., Krasner, S., Orme-Zavaleta, J., Rief, J. and Tardiff, R., "Disinfection by-products in drinking water: critical issues in health effects research," Environ. Health Perspect., 105(1), (1997).
  4. Hargette, P., Budd, G. and Cline, M., "Strategies at Charleston CPW for compliance with DBP regulations," Proceedings of AWWA 2004 Annual Conference, June 13-17, Orlando, Florida, (2004).
  5. Krasner, S. W. "Chemistry of disinfection by-product formation", Formation and Control of Disinfection By-Products in Drinking Water, Singer, P. C.(Ed), American Water Works Association, Denver, pp. 27-52(1999).
  6. Chin, Y. P., Aiken, G. O., Loughlin, E. O., "Molecular weight, polydispersity and spectroscopic properties of aquatic humic substances," Environ. Sci. Technol., 28(11), 1853-1858(1994). https://doi.org/10.1021/es00060a015
  7. Cowman, G. A. and Singer, P. C., "Effect of bromide ion on haloacetic acid speciation resulting from chlorination and chloramination of aquatic humic substances," Environ. Sci. Technol., 30(1), 16-24(1996). https://doi.org/10.1021/es9406905
  8. Chang, E. E., Lin, Y. P. and Chiang, P. C., "Effects of bromide on the formation of THMs and HAAs," Chemosphere, 43, 1029-1034(2001). https://doi.org/10.1016/S0045-6535(00)00210-1
  9. Yang, X. and Shang, C., "Chlorination byproduct formation in the presence of humic acid, model nitrogenous organic compounds, ammonia and bromide," Environ. Sci. Technol., 38(19), 4995-5001(2004). https://doi.org/10.1021/es049580g
  10. 손희종, 정철우, 강임석, "상수원수중의 천연유기물질 특성과 염소 소독부산물 생성의 관계," 대한환경공학회지, 26(4), 457-466(2004).
  11. Goslan, E. H., Jefferson, B., Jarvis, P. R., and Parson, S. A., "Aquatic natural organic matter (NOM): will it form THMs or HAAs?," Proceedings of IWA World Water Congress, September 10-14, Beijing, China (2008).
  12. Richardson, S. D., "Disinfection by-products and other emerging contaminants in drinking water," Trends in Analytical Chemistry, 22(10), 666-684(2003). https://doi.org/10.1016/S0165-9936(03)01003-3
  13. Babcock, D. V. and Singer, P. C., "Chlorination and coagulation of humic and fulvic acids," J.. AWWA, 71(3), 149(1979).
  14. Keith, L. H., Hall, R. C., Hanisch, R. C., Landolt, R. G. and Henderson, J. E., "New methods for analyzing water pollutants," Water Sci. Technol., 14, 59-71(1982).
  15. Bull, R. J. and Robinson, M., "Carcinogenic activity of haloacetonitrile and haloacetone derivatives in the mouse skin and lung," In Water Chlorination, Chemistry, Environmental Impact and Health effects, 5, pp. 221-227(1983).
  16. Bull, R. J., Bull, M., Reckhow, D. A., Use of quantitative structure toxicity relationships(QSTR) to identify disinfection by-products of potential health importance. Proceedings of AWWA Water Quality Technology Conference, San Antonio, U.S.A., (2004).
  17. Krasner,B. S. W., McGuire, M J., Jacangelo, J. G., Patania, N. L., Reagan, K. M. and Aieta, E. M., "The occurrence of disinfection by-products in U.S. drinking water," J., AWWA, 81(8), 41(1989).
  18. Oliver, B. G., "Dihaloacetonitriles in drinking water: algae and fulvic acid as precursors," Environ. Sci. Technol., 17(2), 80(1983). https://doi.org/10.1021/es00108a003
  19. Reckhow, D. A., Rotello, V., Kim, J. and Bull, R. J., "Disinfection byproduct formation from key nitrogenous precursors," Proceedings of AWWA WQTC, (2004)
  20. Ueno, H., Moto, T., Sayato, Y. and Nakamuro, K., "Disinfection by-products in the chlorination of organic nitrogen compounds: by-products from kynurenine," Chemosphere, 33(8), 1425-1433(1996). https://doi.org/10.1016/0045-6535(96)00281-0
  21. 서인숙, 손희종, 안욱성, 유선재, 배상대, "뇨 성분에서의 염소 소독부산물 생성 특성," 대한환경공학회지, 30(3), 286-292(2008).
  22. U. S. EPA, National Exposure Research Laboratory, Office of Research and Development, Method 552.3., Cincinnati, Ohio., (2003).
  23. U. S. EPA, National Exposure Research Laboratory, Office of Research and Development, Method 551.1., Cincinnati, Ohio., (1995).