• Title/Summary/Keyword: 할로아세토니트릴

Search Result 8, Processing Time 0.024 seconds

Influence of Solvents on Rates of Reactions of 2,4-Dinitro Substituted Halobenzenes with Substituted Anilines (Ⅱ) (2,4-이니트로할로벤젠과 치환된 아닐린의 반응속도에 대한 용매효과 (제2보))

  • Hai Whang Lee;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.7-11
    • /
    • 1978
  • The reactions of 2,4-dinitroiodobenzene with para subtituted anilines in acetonitrile-methanol binary solvent mixtures have been studied. Rate constants for reactions in methanol rich solvents are greater than for reactions in acetonitrile rich solvents. Kinetic results show that the bond formation step is rate determining in the solvent system studied. The solvent effect can be explained by stabilization of the transition state by formation of hydrogen bond between oxygen atom of methanol and hydrogen atom of aniline.

  • PDF

Influence of Solvents on Rates of Reactions of 2,4-Dinitro Substituted Halobenzenes with Substituted Anilines (III) (2,4-이니트로할로벤젠과 치환된 아닐린의 반응속도에 대한 용매효과 (제3보))

  • Hai Whang Lee;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.4
    • /
    • pp.221-228
    • /
    • 1978
  • Rates of reactions of 2,4-dinitrofluorobenzene and 2,4-dinitrobromobenzene with para substituted anilines in acetonitrile-methanol binary mixtures have been measured. It has been shown that methanol acts as nucleophilic catalyst upon reaction of 2,4-dinitrobromobenzene with anilines and as bifunctional catalyst upon reaction of 2,4-dinitrofluorobenzene with anilines. The electrophilic catalysis by methanol probably consists of formation of hydrogen bond in the transition state between alcoholic hydrogen and leaving group, fluorine. Nucleophilic catalysis by methanol may be ascribed to formation of hydrogen bond between alcoholic oxygen and amine hydrogen in the transition state.

  • PDF

Characteristics of Chlorination Byproducts Formation of Amino Acid Compounds (아미노산 성분에서의 염소 소독부산물 생성 특성)

  • Son, Hee-Jong;Choi, Young-Ik;Bae, Sang-Dae;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.332-340
    • /
    • 2009
  • This study was conducted to analyze and determine formation potentials for chlorination disinfection by-products (DBPs) from twenty amino acid compounds with or without $Br^-$. Two of twenty amino acid compound were tryptophan and tyrosine that were relatively shown high for formation of trihalomethanes (THMs)/dissolved organic carbon (DOC) whether or not $Br^-$ presented. Other 18 compounds were shown low for formation of THMs/DOC whether or not $Br^-$ presented. Five amino acid compounds that were tryptophan, tyrosine, asparagine, aspartic acid and histidine were shown high for formation of haloacetic acids (HAAs)/DOC whether or not $Br^-$ presented. Although formation of dichloroacetic acid (DCAA) was dominated in asparagine, aspartic acid and histidine, trichloroacetic acid (TCAA) was dominated in tryptophan and tryptophan. The formation of haloacetnitriles (HANs)/DOC whether or not $Br^-$ presented was high in Aspartic acid, histidine, asparagine, tyrosine and tryptophan. Specially, aspartic acid was detected 660.2 ${\mu}$g/mg (HAN/DOC). Although the formation of chloralhydrate (CH)/DOC was shown high in asparagine, aspartic acid, histidine, methionine, tryptophan and tyrosine, the formation of Chloropicrin (CP)/DOC was low (1 ${\mu}$g/mg) in twenty amino acid compounds. The formations of THM, HAA and HAN were also investigated in functional groups of amino acids. The highest formation of THM was shown in amino acids compounds (tryptophan and tyrosine) with an aromatic functional group. Highest, second-highest, third-highest and fourth-highest functional groups for formation of HAA were aromatic, neutral, acidic and basic respectively. In order of increasing functional groups for formation of HAN were acidic, basic, neutral and aromatic.

Formation Characteristics and Control of Disinfection Byproducts in a Drinking Water Treatment Plant Using Lake Water (호소수를 원수로 사용하는 정수장의 소독부산물 생성 특성 및 제어 방안)

  • Lee, Kichang;Gegal, Bongchang;Choi, Ilhwan;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.5
    • /
    • pp.269-276
    • /
    • 2015
  • This study investigated the influence of characteristics of natural organic matter (NOM) on the formation of disinfection by-products (DBPs), and proposed the control strategies of DBPs formation in a drinking water treatment plant using lake water in Gyeongsangbuk-do. The fluorescence excitation-emission matrix analysis results revealed that the origins of NOM in raw waters to the plant were a mixture of terrestrial and microbial sources. Molecular size distributions and removals of NOM fractions were evaluated with a liquid chromatography-organic carbon detector (LC-OCD) analysis. Humic substances and low molecular weight organics were dominant fractions of NOM in the raw water. High molecular weight organics were relatively easier to remove through coagulation/precipitation than low molecular weight organics. The concentrations of DBPs formed by pre-chlorination increased through the treatment processes in regular sequence due to longer reaction time. Chloroform (74%) accounts for the largest part of trihalomethanes, followed by bromodichloromethane (22%) and dibromochloromethane (4%). Dichloroacetic acid (50%) and trichloroacetic acid (48%) were dominant species of haloacetic acids, and brominated species such as dibromoacetic acid (2%) were minimal or none. Dichloroacetonitrile (60%) accounts for the largest part of haloacetonitriles, followed by bromochloroacetonitrile (30%) and dibromoacetonitrile (10%). The formation of DBPs were reduced by 16~44% as dosages of pre-chlorine decreased. Dosages of pre-chlorine was more contributing to DBPs formation than variations of dissolved organic contents or water temperature.

Characteristics of Chlorination Byproduct Formation of Synthetic Nitrogenous Compounds (합성유기질소 성분에서의 염소 소독부산물 생성 특성)

  • Son, Hee-Jong;Hwang, Young-Do;Roh, Jae-Soon;Bean, Jae-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.5
    • /
    • pp.523-530
    • /
    • 2010
  • This study was conducted to analyze and determine formation potentials for chlorination disinfection by-products (DBPs) from 14 synthetic nitrogen compounds with or without $Br^-$. 5 of 14 compounds were 3-aminobenzoic acid, 2-aminophenol, aniline, anthranilic acid and 4-nitroaniline that were relatively shown high for formation of THMs/DOC whether or not $Br^-$ presented. 6 compounds that were p-nitrophenol, 3-aminobenzoic acid, 2-aminophenol, aniline, anthranilic acid and 4-nitroaniline were shown high for formation of haloacetic acids (HAAs)/DOC whether or not $Br^-$ presented. Trichloroacetic acid (TCAA) was dominated in 6 compounds. The formation of haloacetonitriles (HANs)/DOC whether or not $Br^-$ presented was high in 3-aminobenzoic acid, 2-aminophenol, aniline and anthranilic acid. Specially, aniline was detected 14.6∼16.1 ${\mu}g/mg$. The formation of chloral hydrate (CH)/DOC and chloropicrin (CP)/DOC were shown high in 3-aminobenzoic acid and 2-aminophenol in 14 compounds. 6 compounds (3-aminobenzoic acid, 2-aminophenol, aniline, anthranilic acid, 4-nitroaniline, p-nitrophenol) and a commercial humic acid were tested for the formation of DBPs/DOC whether or not $Br^-$ presented. When $Br^-$ was added, the DBPs/DOC was higher for the order of aniline> anthranilic acid> 3-aminobenzoic acid> 4-nitroaniline> humic acid> p-nitrophenol> 2-aminophenol. And when $Br^-$ was not added, the DBPs/DOC was higher for the order of anthranilic acid> aniline> p-nitrophenol> humic acid> 4-nitroaniline> 3-aminobenzoic acid> 2-aminophenol.

Characteristics of Chlorination Byproducts Formation of Urinary Organic Compounds (뇨 성분에서의 염소 소독부산물 생성 특성)

  • Seo, In-Sook;Son, Hee-Jong;Ahn, Wook-Sung;You, Sun-Jae;Bae, Sang-Dae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.286-292
    • /
    • 2008
  • This study was conducted to analyze and determine the formation potential of chlorination DBPs from seven urinary compounds with or without Br$^-$. Three of seven components were kynurenine, indole and uracil that were relatively shown high the formation potential of chlorination DBPs concentrations. The reported results of THMs/DOC with or without Br$^-$ in kynurenine showed that THMs/DOC was detected 86.9 $\mu$g/mg when Br$^-$ was not added, and THMs/DOC was detected 100.8 $\mu$g/mg when Br$^-$ was presented. In indole, THMs/DOC was increased from 6.58 $\mu$g/mg to 31.4 $\mu$g/mg when Br$^-$ was added. Moreover, among them, the highest, second-highest and third-highest HAAs/DOC were shown in kynurenine, uracil and indole respectively. Specially, HAAs/DOC was significantly deceased in kynurenine and indole when Br$^-$ was presented. This was a totally different phenomenon for THMs/DOC. TCAA was dominated in HAAs for kynurenine and indole, and DCAA was also dominated in HAAs for uracil. The highest formation of HANs/DOC was shown in kynurenine whether or not Br$^-$ presented, and DCAN was predominant in HANs. HANs was not formed by chlorination in uracil. In addition, the formation of CH/DOC was relatively low in kynurenine and indole. The formation of CH/DOC was specially high(1,270 $\mu$g/mg) in uracil when Br$^-$ was not added. The formation of CH/DOC was 1,027 $\mu$g/mg in uracil when Br$^-$ was added. The formations of THMs and HAAs were also investigated in kynurenine, indole and uracil when Br$^-$ was presented or not. The formation of THMs/DOC was higher in kynurenine and indole when Br$^-$ was presented. The formation of HAAs/DOC was reduced in kynurenine when Br$^-$ was added. The result could be attributed to higher formation of THMs/DOC in kynurenine when Br$^-$ was added. The formation of HAAs/DOC was also reduced in indole when Br$^-$ was added. To the contrary, this result was not attributed to higher formation of THMs/DOC in indole when Br$^-$ was added.

Removal Characteristics of Nitrogenous Organic Chlorination Disinfection By-Products by Activated Carbons and Biofiltration (활성탄과 생물여과 공정에서의 유기질소계 염소 소독부산물 제거 특성)

  • Seo, In-Suk;Son, Hee-Jong;Choi, Young-Ik;Ahn, Wook-Sung;Park, Chung-Kil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.2
    • /
    • pp.184-191
    • /
    • 2007
  • Coal-, coconut- and wood-based activated carbons and anthracite were tested for an adsorption and biodegradation performances of nitrogenous chlorinated by-products such as chloropicrin, DCAN, DBAN and TCAN. In early stage of operations, an adsorption performance was a main mechanism for removal of nitrogenous chlorinated by-products, however as increasing populations of attached bacteria, the bacteria played a major role in removing nitrogenous chlorinated by-products in the activated carbon and anthracite biofilter. It was also investigated that the compounds were readily subjected to biodegrade. Whilst the coal- and coconut-based activated carbons were found most effective in adsorption of the compounds, the anthracite was worst in adsorption of the compounds. Highest populations and activity of attached bacteria were shown in the coal-based activated carbon. The populations and activity of attached bacteria decreased in the order: coconut-based activated carbon > wood-based activated carbon > anthracite. The attached bacteria were inhibited for removal of the compounds at temperatures below $10^{\circ}C$. The attached bacteria were more active at higher water temperatures$(20^{\circ}C\;<)$ but less active at love. water temperature$(10^{\circ}C\;>)$. The removal efficiencies of the compounds obtained using coal-, coconut- and wood-based activated carbons and anthracite were directly related to the water temperatures. In particular, water temperature was the most important factor for removal of the compounds in the anthracite biofilter because the removal of the compounds depended mainly on biodegradation. Therefore, the main removal mechanism of the compounds the main mechanism on the removal of the compounds using activated carbon was both adsorption and biodegradation by the attached bacteria. The observation suggests that using coal-based activated carbon is the best for removal of nitrogenous chlorinated by-products in the water treatment.

Effect of Wangsuk Stream on NOM and Chlorinated DBPFPs in Han River Water (왕숙천 유입에 따른 한강본류의 천연유기물질과 염소소독부산물 생성능 변화)

  • Park, Hyeon;Kim, Chang-Mo;Chang, Hyun-Seong;Kim, Hyun-Suk;Park, Chang-Min;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1031-1037
    • /
    • 2006
  • The main purposes of this study were to compare the characteristics of fractionated natural organic matters(NOM) from Han River water and Wangsuk(W) stream water, and to investigate the relationships between NOM and the formation of disinfection by products(DBPs). Three types of resin such as XAD-4, XAD-7HP and IRC-50 were used to isolate the water samples into three organic fractions. The DOC concentrations of raw waters were relatively low($1.5{\sim}3.3$ mg/L) at all seasons. The hydrophilic was the major constituent, contributing $44{\sim}63%$ of the total NOM and hydrophobic $21{\sim}33%$, transphilic $16{\sim}31%$, respectively. The formation of trihalomethans(THMs) was highly influenced by particulated NOM especially in the rainy season, whereas haloaceticacid forming potentials(HAAFPs) depended more on the hydrophilic fraction of dissolved NOM which is known to be difficult to be removed through conventional processes. The NOM of W stream was characterized as 15% hydrophobic, 9% transphilic, and 76% hydrophilic. In the fractionation of NOM using resins, $20{\sim}40%$ of the NOM in W tributary water could not be clearly isolated, whereas, 85% of the NOM in the raw water was recovered. Although the DOC concentration of tributary water was higher than the raw waters from the Han River, the DBPFPs was approximately 40% of the raw waters. In DBPFPs aspect, W stream has less effect than Han River water itself. Bromide in tributary waters discharged from waste water treatment plants has been found to shift the distribution of THMs and HANs to the more brominated DBPs.