Plant Physiological Responses in Relation to Temperature, Light Intensity, and CO2 Concentration for the Selection of Efficient Foliage Plants on the Improvement of Indoor Environment

실내 환경 개선에 적합한 식물 선발을 위한 온도, 광도, 이산화탄소 농도에 따른 관엽식물들의 생리적 반응

  • Park, Sin-Ae (Department of Environmental Science, Kon-Kuk University) ;
  • Kim, Min-Gi (Department of Environmental Science, Kon-Kuk University) ;
  • Yoo, Mung-Hwa (Department of Environmental Science, Kon-Kuk University) ;
  • Oh, Myung-Min (Department of Horticultural Science, Chungbuk National University) ;
  • Son, Ki-Cheol (Department of Environmental Science, Kon-Kuk University)
  • Received : 2010.03.16
  • Accepted : 2010.09.27
  • Published : 2010.12.31

Abstract

This study was conducted to select efficient foliage plants for improving indoor environment conditions through the investigation of physiological responses including photosynthetic rate according to temperature, light intensity, and $CO_2$ level. Eight popular foliage plants used in this study were $Hedera$ $helix$ L., $Cissus$ $rhombifolia$ Vahl, $Ficus$ $benjamina$ L. 'Hawaii', $Syngonium$ $podophyllum$ Schott 'Albo-Virens', $Dieffenbachia$ $sp.$ 'Marrianne', $Pachira$ $aquatica$ Aubl., $Spathiphyllum$ $wallisii$ Regel, and $Scindapsus$ $aureus$ Engler. Photosynthetic rate and transpiration rate of the plants subjected to various light intensities (0, 25, 50, 75, 100, 150, 300, and $600{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD), $CO_2$ levels (0, 50, 100, 200, 400, 700, and $1,000{\mu}molCO_2{\cdot}mol^{-1}$), and two different temperatures (16 and $22^{\circ}C$) were measured. In addition, various parameters in relation to photosynthesis were calculated from the measured data. As a result, the patterns of photosynthesis varied among 8 foliage plants according to light intensity, $CO_2$ level, and temperature. Most foliage plants except $Dieffenbachia$ had high levels of apparent quantum yield, which represents the photosynthetic rate under low light intensity (PPFD $0-100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). $Hedera$ $helix$, $Ficus$ $benjamina$, $Pachira$ $aquatica$, and $Spathiphyllum$ $wallisii$ exposed to high light intensity (PPFD $200-600{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) showed high levels of photosynthesis. $Cissus$ $rhombifolia$ and $Syngonium$ $podophyllum$ were low in $CO_2$ fixation efficiency compared to the other 6 foliage indoor plants. $Hedera$ $helix$ and $Spathiphyllum$ $wallisii$ showed high photosynthetic rate under high $CO_2$ level and vigorous photosynthesis was also observed in $Ficus$ $benjamina$ and $Pachira$ $aquatica$ grown under $22^{\circ}C$. Considering characteristics of indoor environment such as low light, high $CO_2$ level, and low relative humidity, therefore, $Hedera$ $helix$, $Spathiphyllum$ $wallisii$, $Ficus$ $benjamina$, and $Pachira$ $aquatica$ were efficient indoor foliage plants to improve indoor environmental conditions.

본 연구는 관엽식물 8종을 선정하여 온도, 광도, 이산화탄소 농도에 따른 식물의 광합성률을 포함한 생리반응을 살펴 보고, 그에 따른 실내 환경 개선에 효과적인 식물을 구명하고자 실시하였다. 식물재료로는 헤데라, 벤자민 고무나무, 파키라, 스파티필름, 시서스, 디펜바키아, 스킨답서스, 싱고니움을 사용하였으며, $16^{\circ}C$$22^{\circ}C$ 온도조건하에서 광도는 PPFD 0, 25, 50, 75, 100, 150, 300, 또는 $600{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$의 수준으로, 이산화탄소 농도는 0, 50, 100, 200, 400, 700, 또는 $1,000{\mu}molCO_2{\cdot}mol^{-1}$의 수준으로 조절하여 휴대용 광합성 측정기(Li-6400, Li Cor, USA)로 관엽식물들의 광합성 효율과 증산율을 측정하였다. 광도, 엽육내 이산화탄소 농도 변화, 그리고 온도에 따른 관엽식물들의 광합성 반응은 매우 다양했다. 약광(PPFD $0-100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$)에서의 광합성 능력을 나타내는 순양자수율은 디펜바키아를 제외한 대부분의 종에서 높게 나타났으며, 고광(PPFD $200-600{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$)에서는 헤데라, 벤자민 고무나무, 파키라, 스파티필름이 높은 광합성능력을 나타내었다. 이산화탄소를 고정하는 암반응과 관련된 탄소고정효율은 시서스와 싱고니움을 제외한 6종의 관엽식물들에서 비교적 높게 나타났다. 고농도의 이산화탄소에서 광합성률이 높은 식물은 헤데라와 스파티필름이었으며, $22^{\circ}C$에서 자란 벤자민 고무나무와 파키라도 높은 광합성률을 보였다. 한편, 헤데라, 스파티필름은 증산율도 높게 나타났다. 따라서 저광, 고농도의 이산화탄소, 낮은 상대습도가 특징인 일반 가정이나 사무실 같은 실내 환경을 고려했을 때 헤데라, 벤자민 고무나무, 파키라, 스파티필름 등을 이용하는 것이 실내 환경 개선에 효과적이라고 판단되었다.

Keywords

References

  1. Bales, S.F. 1995. The kitchen garden: Raised beds and electric chairs. Horticulture 73:34-39.
  2. Choi, J.I., E.J. Hahn, and K.Y. Paek. 1999. Photosynthetic characteristics and chlorophyll content of Hedera canariensis, Pachira aquatica, and Ficus benjamina in response to photosynthetic photon fluxes and $CO_{2}$concentrations. J. Kor. Soc.Hort. Sci. 40:627-630.
  3. Choi, J.I., J.H. Seon, K.Y. Paek, and T.J. Kim. 1998. Photosynthesis and stomatal conductance of eight foliage plant species as affected by photosynthetic photon flux density and temperature. J. Kor. Soc. Hort. Sci. 39:197-202.
  4. Evans, J.R. 1987. The dependence of quantum yield on wavelength and growth irradiance. Aust. J. Plant Physiol. 14:69-79. https://doi.org/10.1071/PP9870069
  5. Farquhar, G.D., S. von Caemmerer, and J.A. Berry. 1980. A biochemical model of photosynthetic $CO_{2}$ assimilation in leaves of C3 species. Planta 149:78-90. https://doi.org/10.1007/BF00386231
  6. Fjeld, T., B. Veiersted, L. Sandvik, G. Riise, and F. Levy. 1998. The Effect of indoor foliage plants on health and discomfort symptoms among office workers. Indoor Built Environ. 7:204-209.
  7. Hopkins, W.G. 1999. Introduction to plant physiology. John Wiley & Sons, Inc. New York, NY, USA.
  8. Karlsson, M.G. and R.D. Heins. 1985. Modeling light and temperature effects on Chrysanthemum morifolium. Acta Horticulturae 174:235-240.
  9. Kim, K.J., M.J. Kil, J.S. Song, E.H. Yoo, K.C. Son, and S.J. Kays. 2008. Efficiency of volatile formaldehyde removal by indoor plants: Contribution of aerial plant parts versus the root zone. J. Amer. Soc. Hort. Sci. 133:521-526.
  10. Kim, P.G. and E.J. Lee. 2001. Ecophysiology of photosynthesis 1: Effects of light intensity and intercellular $CO_{2}$ pressure on photosynthesis. Kor. J. Agric. For. Meteorol. 3:126-133.
  11. Kim, P.G., Y.S. Yi, D.J. Chung, and S.Y. Woo. 2001. Effects of light intensity on photosynthetic activity of shade tolerant and intolerant tree species. J. Kor. For. Soc. 90:476-487.
  12. Kondrashova, M.N., E.V. Grigorenko, A.N. Tikhonov, T.V. Sirota, A.V. Teplov, I.G. Stavrovskaya, N.I. Kosyakova, and V.P. Tikhonov. 2000. The Primary physico-chemical mechanism for the beneficial biological/medical effects of negative air ions. IEEE Trans. Plasma Sci. 28:230-237. https://doi.org/10.1109/27.842910
  13. Krueger, A.P. and E.J. Reed. 1976. Biological impact of small air ions. Science 193:1209-1213. https://doi.org/10.1126/science.959834
  14. Lee, J.E. 2003. A study on the rate of indoor air purification by plants and gauging compared with air clean instrument. J. Kor. Soc. Interior Landscape 5(2):1-12.
  15. Liu, Y.J., Y.J. Mu, Y.G. Zhu, H. Ding, and N.C. Arens. 2007. Which ornamental plant species effectively remove benzene from indoor air? Atmos. Environ. 41:650-654. https://doi.org/10.1016/j.atmosenv.2006.08.001
  16. Park, S.H. and K.K. Shim. 1989. A Study on the utilization status of the interior landscape plants in large buildings in Seoul. J. Kor. Ins. Land. Arch. 17:43-54.
  17. Park, S.H. and Y.B. Lee. 1997. Indoor $CO_{2}$ and $NO_{2}$ fixation in light-acclimatized foliage plants. J. Kor. Soc. Hort. Sci. 38:551-555.
  18. Park, S.H., Y.B. Lee, G.Y. Bea, and M. Kondo. 1998. Anion evolution in plants and its involved factors. J. Kor. Soc. Hort. Sci. 39:115-118.
  19. Relf, D. and S. Dorn. 1995. Horticulture: Meeting the needs of special population. HortTechnol. 5:94-103.
  20. Shiotsu, M. and I.K. Yoshizawa. 1998. Survey on human activity patterns according to time and place: Basic research on the exposure dose to indoor air pollutants Part 1. Transactions of AIJ. 511:45-52.
  21. Snyder, S.D. 1990. Building interiors, plants and automation, p. 5-29. Prentice Hall, Englewood Cliffs, NJ, USA.
  22. Son, K.C., D.K. Min, M.K. Kim, and H.J. Park. 1998. Modeling for estimation of transpiration and photosynthesis rates of Pachira according to environmental changes using neural network. J. Kor. Soc. Hort. Sci. 39:854-857.
  23. Son, K.C. and M.K. Kim. 1998. Influences of indoor light, temperature, absolute humidity, and $CO_{2}$ concentration on the changes of transpiration and photosynthesis rate of Pachira aquatica and their statistical modeling. J. Kor. Soc. Hort. Sci. 39:605-609.
  24. Son, K.C., S.H. Lee, S.G. Seo, and J.E. Song. 2000. Effects of foliage plants and potting soil on the absorption and adsorption of indoor air pollutants. J. Kor. Soc. Hort. Sci. 41:305-310.
  25. Son, K.C., S.K. Park, H.O. Boo, G.Y. Bea, K.Y. Beak, S.H. Lee, and B.G. Heo. 1997. Horticultural therapy. 1st ed., p. 35-95. Seowon Press, Seoul, Korea.
  26. Son, K.H. and D.Y. Yeam. 1987. Effects of light intensities and temperatures in various indoor sites on growth of certain foliage plants. J. Kor. Soc. Hort. Sci. 28:173-184.
  27. Suh, Y.N., J.S. Lee, C.K. Sang, and I.Z. Chi. 1991. Studies on the present status of cultivation and utilization of foliage plants. J. Kor. Soc. Hort. Sci. 32:533-544.
  28. Woleverton, B.C., A. Johnson, and K. Bounds. 1989. Interior landscape plant for indoor air pollution abatement. p.1-2. NASA Report.
  29. Yang, D.S., S.V. Pennisi, K.C. Son, and S.J. Kay. 2009. Screening indoor plants for volatile organic pollutant removal efficiency. HortScience 44:1-5.