식물공장 시스템에서 Thermal Units을 이용한 Single-Stemmed Rose 'Vital'의 신초발달 예측

Estimation of Shoot Development for a Single-stemmed Rose 'Vital' Based on Thermal Units in a Plant Factory System

  • 여경환 (서울시립대학교 환경원예학과) ;
  • 조영열 (제주대학교 원예환경전공) ;
  • 이용범 (서울시립대학교 환경원예학과)
  • Yeo, Kyung-Hwan (Department of Environmental Horticulture, The University of Seoul) ;
  • Cho, Young-Yeol (Department of Horticulture, Jeju National University) ;
  • Lee, Yong-Beom (Department of Environmental Horticulture, The University of Seoul)
  • 투고 : 2009.02.25
  • 심사 : 2010.05.07
  • 발행 : 2010.10.31

초록

본 실험은 thermal units을 이용하여 single-stemmed rose($Rosa$ $hybrida$ L.) 'Vital'의 초장, 생체중 및 총엽면적과 각 생육단계에 도달하는 시간을 예측하고, 장미의 신초발달 모델을 개발하기 위해 수행하였다. 기저온도($T_b$), 적정온도($T_{opt}$), 및 최대온도($T_{max}$)는 신초의 발달율과 평균온도의 회귀를 통해 예측하였다. 삽목에서 정식(CT-TP)까지의 생육단계에 대한 신초의 발달율은 linear 함수인 $R_b(d^{-1})$ = -0.0089 + $0.0016{\cdot}Temp$으로 나타났다. 정식에서 수확(TP-HV)까지의 생육단계에서 신초의 발달율은 parabolic 함수인 $R_h(d^{-1})$ = $-0.0001{\cdot}Temp^2$ + $0.0054{\cdot}Temp$ - 0.0484으로 나타낼 수 있었다. $T_b$, $T_{opt}$$T_{max}$는 각각 5.56, 27.0, 및 $42.7^{\circ}C$으로 나타났다. Tb값 $5.56^{\circ}C$은 single-stemmed rose의 신초발달에 대한 온도함수인 thermal units 계산에 이용되었다. 엽수, 엽면적 및 엽중은 삽목시기에 상관없이 sigmoid curve를 나타내었다. 엽면적(LA) 모델은 thermal units를 사용하여 sigmoid 함수, LA = 578.7 $[1+(thermal units/956.1)^{-8.54}]^{-1}$로 기술할 수 있었다. 삽목에서 정식(CT-TP)과 정식에서 수확(TP-HV)까지의 생육단계에 있어서 요구되는 평균 thermal units($^{\circ}C{\cdot}d$)는 각각 $426{\pm}42(^{\circ}C{\cdot}d)$$783{\pm}24(^{\circ}C{\cdot}d$)였다.

This study was conducted to predict number and fresh weight of leaves, and total leaf area of a single-stemmed rose 'Vital' based on the accumulated thermal units, and to develop a model of shoot development for the prediction of the time when the flowering shoot reaches a phenological stage in a plant factory system. The base temperature ($T_b$), optimum temperature ($T_{opt}$), and maximum temperature ($T_{max}$) were estimated by regressing the rate of shoot development against the temperature gradient. The rate of shoot development ($R$, $d^{-1}$) for the phase from cutting to bud break (CT-BB) was best described by a linear model $R_b$ ($d^{-1}$) = -0.0089 + $0.0016{\cdot}temp$. The rate of shoot development for the phase from bud break to harvest (BB-HV) was fitted to the parabolic model $R_h$ ($d^{-1}$) = $-0.0001{\cdot}temp^2$ + $0.0054{\cdot}temp$ - 0.0484. The $T_b$, $T_{opt}$, and $T_{max}$ values were 5.56, 27.0, and $42.7^{\circ}C$, respectively. The $T_b$ value was used in the thermal unit computations for the shoot development. Number of leaves, leaf area (LA), and leaf fresh weight showed sigmoidal curves regardless of the cut time. The shoot development and leaf area model was described as a sigmoidal function using thermal units. Leaf area was described as LA = 578.7 $[1+(thermal units/956.1)^{-8.54}]^{-1}$. Estimated and observed shoot length and leaf fresh weight showed a reasonably good fit with 1.060 ($R^2=0.976^{***}$) and 1.043 ($R^2=0.955^{***}$), respectively. The average thermal units required from cutting to transplant and from transplant to harvest stages were $426{\pm}42^{\circ}C{\cdot}d$ and $783{\pm}24^{\circ}C{\cdot}d$, respectively.

키워드

참고문헌

  1. Bredmose, N. and J. Hansen. 1996. Topophysis affects the potential of axillary bud growth, fresh biomass accumulation and specific fresh weight in single-stem rose. Ann. Bot. 78:215-222. https://doi.org/10.1006/anbo.1996.0115
  2. Cho, Y.Y. and J.E. Son. 2005. Development of models for estimating total leaf area and shoot fresh and dry weights of tomato (Lycopersicon esculentum cv. Seokwang). J. Kor. Soc. Hort. Sci. 46:103-107.
  3. Cho, Y.Y. and J.E. Son. 2007. Estimation of leaf number and leaf area of hydroponic pak-choi plants (Brassica campestris ssp. chinensis) using growing degree-days. J. Plant Bio. 50:8-11. https://doi.org/10.1007/BF03030593
  4. Craufurd, P.Q., A. Qi, R.H. Ellis, R.J. Summerfield, E.H. Roberts, and V. Mahalakshmi. 1998. Effect of temperature on time to panicle initiation and leaf appearance in Sorghum. Crop Sci. 38:942-947. https://doi.org/10.2135/cropsci1998.0011183X003800040011x
  5. de Vries, D.P. 1993. The vigour of glasshouse roses. Scionrootstocks relationships: Effects of phenotypic and genotypic variation. Diss., Wageningen Univ., Wageningen, The Netherlands. p. 1-170.
  6. Gijzen, H., E. Heuvelink, L.F.M. Mardelis, E. Dayan, S. Cohen, M. Fuchs, and H. Challa. 1998. A model for greenhouse crops and greenhouse climate. Acta Hort. 456:441-450.
  7. Gardner, F.P., R.B. Pearce, and R.L. Mitchell. 1985. Carbon fixation by crop canopy, p. 48-57. In: F.P. Gardner, R.B. Pearce and R.L. Mitchell (eds.). Physiology of crop plants. Iowa State University Press, Iowa, USA.
  8. Goudriaan, J. and J.L. Monteith. 1990. A mathematical function for crop growth based on light interception and leaf area expansion. Ann. Bot. 66:695-701. https://doi.org/10.1093/oxfordjournals.aob.a088084
  9. Halevy, A.H. 1984. Light and autonomous induction, p. 65-73. In: D. Vince-Prue, B. Thomas, K.E. Cockshull (eds.). Light and the flowering process. Academic Press, London.
  10. Heuvelink, E. 1996. Tomato growth and yield: Quantitative analysis and synthesis. Diss. Wageningen Univ., The Netherlands. p. 1-326.
  11. Heuvelink, E. 1999. Evaluation of a dynamic simulation model for tomato crop growth and development. Ann. Bot. 83:413-422. https://doi.org/10.1006/anbo.1998.0832
  12. Hunt, L.A., W. Yan, and G.S. McMaster. 2001. Simulating response to temperature. Proc. of the Maize and Wheat Systems Modeling Workshop, April 23-25, Natural Resources Croup, Geographic Information Systems, El Batan, Mexico. p. 23-29.
  13. Lee, J.H. and E. Heuvelink. 2003. Simulation of leaf area development based on dry matter partitioning and specific leaf area for cut chrysanthemum. Ann. Bot. 91:319-327. https://doi.org/10.1093/aob/mcg015
  14. Langton, F.A., L.R. Benjamin, and R.N. Edmondson. 1999. The effects of crop density on plant growth and variability in cut-flower chrysanthemum (Chrysanthemum morifolium Ramat.). J. Hort. Sci. Biotech. 74:493-501. https://doi.org/10.1080/14620316.1999.11511142
  15. Larsen, R.U. and L. Persson. 1999. Modeling flower development in greenhouse chrysanthemum cultivars in relation to temperature and response group. Sci. Hort. 80:73-89. https://doi.org/10.1016/S0304-4238(98)00219-2
  16. Lieth, J.H. and C.C. Pasian. 1991. A simulation model for the growth and development of flowering rose shoots. Sci. Hort. 46:109-128. https://doi.org/10.1016/0304-4238(91)90097-I
  17. Marcelis, L.F.M., E. Heuvelink, and J. Goudriaan. 1998. Modelling biomass production and yield of horticultural crops: A review. Sci. Hort. 74:83-111. https://doi.org/10.1016/S0304-4238(98)00083-1
  18. McMaster, G.S. and W.W. Wilhelm. 1997. Growing degree-days: One equation, two interpretations. Agr. For. Meteorol. 87: 291-300. https://doi.org/10.1016/S0168-1923(97)00027-0
  19. Monteith, J.L. 1981. Climatic variation and the growth of crops. Q. J. Royal Meteorol. Soc. 107:749-774. https://doi.org/10.1256/smsqj.45401
  20. Moot, D.J., W.R. Scott, A.M. Roy, and A.C. Nicholls. 2000. Base temperature and thermal time requirements for germination and emergence of temperate pasture species. N.Z. J. Agr. Res. 43:15-25. https://doi.org/10.1080/00288233.2000.9513404
  21. NeSmith, D.S. 1997. Summer squash (Cucurbita pepo L.) leaf number as influenced by thermal time. Sci. Hort. 68:219-225. https://doi.org/10.1016/S0304-4238(96)00952-1
  22. Pasian, C.C. and J.H. Lieth. 1994. Prediction of flowering rose shoot development based on air temperature and thermal units. Sci. Hort. 59:131-145. https://doi.org/10.1016/0304-4238(94)90080-9
  23. Pasian, C.C. and J.H. Lieth. 1996. Prediction of rose shoot development: Model validation for the cultivar 'Cara Mia' and extension to the cultivars 'Royalty' and 'Sonia'. Sci. Hort. 66:117-124. https://doi.org/10.1016/0304-4238(96)00904-1
  24. Perry, K.B., T.C. Whener, and G.L. Johnson. 1986. Comparison of 14 methods to determine heat unit requirements for cucumber harvest. HortScience 21:419-423.
  25. Qi, A., T.R. Wheeler, J.D.H. Keatinge, R.H. Ellis, R.J. Summerfield, and R.Q. Craufurd. 1999. Modelling the effects of temperature on the rates of seeding emergence and leaf appearance in legume cover crops. Expt. Agr. 35:327-344. https://doi.org/10.1017/S0014479799003099
  26. Shaykewich, C.F. 1995. An appraisal of cereal crop phenology modeling. Can. J. Plant Sci. 75:329-341. https://doi.org/10.4141/cjps95-057
  27. Summerfield, R.J. and E.H. Roberts. 1987. Effects of illuminance on flowering in long- and short-day grain legumes: A reappraisal and unifying model, p. 203-223. In: J.G. Atherton (eds.). Manipulation of flowering. Butterworths, London.
  28. Tei, F., D.P. Aikman, and A. Scaife. 1996. Growth of lettuce, onion and red beet. 2. Growth modeling. Ann. Bot. 78:645-652. https://doi.org/10.1006/anbo.1996.0172
  29. Thornley, J.H.M. and I.R. Johnson. 1990. Plant and crop modeling. A mathematical approach to plant crop physiology. Clarendon Press, Oxford. p.1-669.
  30. van den Berg, G.A. 1987. Influence of temperature on bud break, shoot growth, flower bud atrophy and winter production of glasshouse roses. Diss., Landbouwuniversiteit te Wageningen, Wagenigen, The Netherlands. p. 1-170.
  31. van Henten, E.J. 1994. Validation of a dynamic lettuce growth model for greenhouse climate control. Agr. Syst. 45:55-72. https://doi.org/10.1016/S0308-521X(94)90280-1
  32. Wang, J.Y. 1960. A critique of the heat unit approach to plant responses studies. Ecology 41:785-790. https://doi.org/10.2307/1931815
  33. Yan, W. and L.A. Hunt, 1999. An equation for modeling the temperature response of plants using only the cardinal temperature. Ann. Bot. 84:607-614. https://doi.org/10.1006/anbo.1999.0955
  34. Yeo, K.H. and Y.B. Lee. 2009. Growth and photosynthesis of single-stemmed roses by macro- and micro-element amendment in a closed aeroponic system. Kor. J. Hort. Sci. Technol. 27:404-413.
  35. Yin, X. and M.J. Kropff. 1996. The effect of temperature on leaf appearance in rice. Ann. Bot. 77:215-221. https://doi.org/10.1006/anbo.1996.0025