Effect of Waste Nutrient Solution and Fertigation Nutrient Solution on the Growth and Qualities of Tomato Grown by Fertigation

관비재배시 토마토 생육과 품질에 미치는 폐양액과 기존 비료의 효과

  • Zhang, Cheng Hao (Vegetables Institute, Zhejiang Academy of Agricultural Science) ;
  • Xu, Zhihao (Department of Horticulture, Kangwon National University) ;
  • Kang, Ho-Min (Department of Horticulture, Kangwon National University) ;
  • Kim, Il-Seop (Department of Horticulture, Kangwon National University)
  • Received : 2009.01.12
  • Accepted : 2009.06.22
  • Published : 2010.08.31

Abstract

Waste nutrient solution (WNS) that was the drained nutrient solution of Horticultural Research Institute of Japan for culture tomato in perlite hydroponics showed $1.9-2.4dS{\cdot}m^{-1}$ of EC and 5.7-7.1 pH from April to July. Although ${NH_4}^+-N$ concentration of WNS decreased remarkably, the other nutrients did not change significantly, as compared with supplied solution. There were no significant differences in plant height, stem diameter, and the other growth characteristics of tomato plants grown by 2 fertigation nutrient solutions; BHF (Bountiful Harvest Fertilizer, 10% of N, 13% of $PO_4$, 13% of K, 0.05% of B, 0.05% of Zn, and 0.0023% of Cu that made in Korea) and Megasol (11% of N, 8% of $PO_4$, 34% of K, 0.032% of Mn, 0.002% of B, 0.048% of Fe, 0.0122% of Zn, and 0.0023% of Cu that made in Belgium.); however, the chlorophyll content of tomato leaf was highest in WNS. The fresh and dry weight of tomato plants were higher in 3 fertigation treatments than irrigation of tap water, while there were no significant differences in fresh and dry weight among the 3 fertigation treatments. The mineral content of tomato leaf also did not show any differences among the 3 fertigation treatments and any regular tendency in all minerals. Total yield, fruit weight and fruit numbers of tomato were higher in WNS, followed by Megasol, BHF and control, although there were not any difference among the 3 fertigation nutrient solution treatments. BER(blossom-end rot)of tomato fruits decreased in fertigation treatments, especially, fruits grown in WNS and BHF showed lower BER. However, the transpiration rate of leaf was higher in control, followed by BHF, WNS and Megasol, The fruit size and soluble solids content was higher in 3 fertigation nutrient treatments than control. These results suggest that WNS can be used for fertigation solution in tomato because yield and quality of tomato fruit grown in WNS fertigation treatment were similar to those in 2 fertigation nutrient solutions treatments(BHF, Megasol).

일본원시배양액을 공급한 토마토의 펄라이트 배지경에서 배출된 폐양액의 EC는 $1.9-2.4dS{\cdot}m^{-1}$, pH는 5.7-7.1의 범위였으며 다량 원소의 농도는 ${NH_4}^+-N$가 감소하였을 뿐 대부분 공급양액과 큰 차이가 없었다. 관비용 양액인 Megasol 및 BHF(풍년비료)과 수경재배 폐양액 처리간에 토마토의 초장과 경경 등의 생육에는 차이가 없었으며, 엽록소 함량은 폐양액 처리에서 가장 높았다. 또한 토마토 식물의 생체 중과 건물중도 2가지 관비와 폐양액간에 차이는 없이 대조구보다 높은 수치를 나타내었다. 토마토 잎의 무기물 함량도 대조구에 비해 3가지 처리에서 높게 나타났으며, 처리에 따른 차이에 일정한 경향은 없었다. 토마토의 수량과 평균과중 그리고 과수에서는 폐양액에서 가장 많았으며, 다음으로 Megasol, BHF 그리고 대조구의 순이었는데, 3가지 관비처리간 유의성 있는 차이는 없었다. 특히 배꼽썩음과 발생율은 대조구에 비해 3가지 관비처리에서 모두 낮았는데, 관비처리중 폐양액과 BHF가 가장 낮았다. 토마토 잎의 증산속도는 대조구가 가장 높았으며, 다음으로 BHF, 폐양액, Megasol의 순서였으나 증산속도가 낮았던 관비처리에선 과실의 크기는 오히려 증가하였고, 당도가 증가하는 결과를 가져왔다. 토마토 과실의 당도는 대조구에 비해 관리처리에서 모두 높았으며 관비처리간 차이에 통계적 유의성은 없었다. 수경재배의 폐양액을 이용한 토마토 관비재배에서 생육, 수량, 그리고 품질면에서 기존 관비용 양액에 뒤지지 않는 우수한 결과를 나타내었다.

Keywords

References

  1. Adams, P. and L.C. Ho. 1989. Effects of constant and fluctuating salinity on the yield, quality and calcium status of tomatoes. J. Hort. Sci. 64:725-732.
  2. Benoit, F. 1992. Practical guide for simple soilless culture techniques. European Vegetable R & D Center, Belgium. p. 33.
  3. Cho, M.S. and K.J. Choi. 2001. Effect of soil fertigation concentration on the growth and quality in muskmelon. Kor. J. Hor. Sci. Technol. 19 (Suppl. II):45. (Abstr.)
  4. Cho, S.M., K.W. Han, and J.Y. Cho. 1996. Nitrate reductase activity by change of nitrate form nitrogen content on growth stage of radish. Kor. J. Environ. Agric. 15:383-390.
  5. Eum, Y.C. 2008. Energy saving techniques for protected horticulture in Korea. J. Bio-Env. Con. 17(Suppl. II):17-40.
  6. Ehret, D.L. and L.C. Ho. 1986. The effects of salinity on dry matter partitioning and fruit growth in tomatoes grown in nutrient film culture. J. Hort. Sci. 61:361-367.
  7. Ikeda, H. and T. Osawa. 1981. Nitrate and ammonium-N absorption by vegetables from nutrient solution containing ammonium nitrate and the resultant change of solution pH. J. Jpn. Soc. Hort. Sci. 50:225-230. https://doi.org/10.2503/jjshs.50.225
  8. Kim, K.Y., T.C. Seo, and Y.C. Kim. 1999. Effects of milliequivalent ratio of K and Ca in the nutrient solution on the growth, yield and blossom end rot of tomatoes grown by perlite culture in hot season. J. Kor. Soc. Hort. Sci. 40:652-656.
  9. Kim, Y.C. 1970. Studies on the nutri-irrigation culture applicable to sandy waste lands. Studies on productivity and mineral constitution of nutri-irrigation culture. J. Kor. Soc. Hor. Sci 8:93-105.
  10. Lee, C.S., B.L. Huh, Y.S. Song, and H. K. Kwak. 1994. Revised rates of NPK fertilizers based on soil testing for vegetable crops. Kor. J. Soil. Fert. 27:85-91.
  11. Lee, E.H., H.J. Kweon, J.N. Lee, J.T. Lee, and W.B. Kim. 2001. Effect of fertigation on onion in highland. Kor. J. Hor. Sci. Technol. 19(Suppl. II):42. (Abstr.)
  12. Lee, E.H., J.T. Lee, J.N. Lee, H.J. Kweon, W.B. Kim, and M.S. Yiem. 2001. Effect of fertigation on Chinese cabbage in highland. Kor. J. Hor. Sci. Technol. 19(Suppl. II):49. (Abstr.)
  13. Lee, U.H. 2001. Fertigation of Chinese cabbage by mineral uptake in highland. Kor. Res. Soc. Protected Hort. 14:10-14.
  14. Lee, X.R. 2001. Development for hydroponic systems of tomato using coal fly ash ball substrates. Ph. D. Thesis. The Univ. of Kangwon, Chuncheon.
  15. Lunt, O.R. and B. Clark. 1959. Bark and wood fragments. Forest Products J. April p. 39-42.
  16. Miyazaki, Y., E. Taleisnik, and V. Kagan-zur. 1988. A saline irrigation regime for improving tomato fruit quality without reducing yield. J. Amer. Soc. Hort. Sci. 113:202-205.
  17. No, C.W., J.K. No, and T.I. Kim. 2003. Studies on fertigation culture of controlled vegetables. RDA, Suwon, Korea.
  18. Park, K,W. and Y.S. Kim. 1998. Hydroponics in horticulture. 1st ed. p. 76-90. Academy Books, Seoul.
  19. Penningsfeld. F. 1971. Symposium on peat in horticulture. Technical Communications 18:1-25.
  20. Rho, M.Y., Y.B. Lee, H.S. Kim, K.B. Lee, and J.H. Bae. 1997. Development of nutrient solution suitable for closed system in substrate culture of cucumber. J. Bio-Env. Con. 6:1-14.
  21. Yun, H.K., X.R. Li, I.S. Kim, and K.C. Yoo. 2000. Physicalchemical properties in the sand-based media. Inst. of Agr. Sci. Kangwon Natl. Univ. J. Agri. Sci. 11:12-19.
  22. Seo, B.S. 1999. Establishment of soil fertigation system and its technologies for avoiding successive cropping injuries and for ensuring regular production and higher fruit quality of greenhouse grown vegetables. ARPC. Research Project Report.
  23. Seo, B.S., S.J. Chung, H.G. Kim, J.P. Lee, and Y.S. Cho. 2000. Effect of concentrations of micronutrients in the nutrient solution on the growth and fruit quality of cherry tomato grown on soil fertigation culture. Kor. J. Hor. Sci. Technol. 18:684. (Abstr.)
  24. Shannon, M.C., J.W. Gronwald, and M. Tal. 1987. Effects of salinity on growth and accumulation of organic and inorganic ions in cultivated and wild tomato species. J. Amer. Soc. Hort. Sci. 112:416-423.
  25. Sonneveld, C. 1981. Items for application of macro-elements in soilless cultures. Acta Hort, 126:187-195.
  26. Yoo, S.O., J.H. Bae, and K.H. Kim. 2001. Investigation of irrigation set point for fertigation of sweet pepper (Capsicum annuum L.). Kor. J. Hor. Sci. Technol. 19 (Suppl. II):69. (Abstr.)
  27. Yoo, S.O., J.H. Bae, K.H. Kim, and H.S. Chung. 2000. Investigation of EC Levels for Fertigation of Sweet pepper (Capsicum annuum L.). Kor. J. Hor. Sci. Technol. 18:687. (Abstr.)