폐쇄형 육묘 시스템에서 딸기의 러너플랜트 생산 증진에 적합한 광합성유효광량자속

Improvement of Runner Plant Production by Increasing Photosynthetic Photon Flux during Strawberry Transplant Propagation in a Closed Transplant Production System

  • 김성겸 (서울대학교 식물생산과학부) ;
  • 정미선 (서울대학교 식물생산과학부) ;
  • 박선우 (서울대학교 식물생산과학부) ;
  • 김무정 (서울대학교 농업생명과학연구원) ;
  • 나해영 (서울대학교 농업생명과학연구원) ;
  • 전창후 (서울대학교 식물생산과학부)
  • Kim, Sung-Kyeom (Department of Plant Science, Seoul National University) ;
  • Jeong, Mi-Seon (Department of Plant Science, Seoul National University) ;
  • Park, Seon-Woo (Department of Plant Science, Seoul National University) ;
  • Kim, Moo-Jung (Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Na, Hae-Young (Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Chun, Chang-Hoo (Department of Plant Science, Seoul National University)
  • 투고 : 2010.03.18
  • 심사 : 2010.04.01
  • 발행 : 2010.08.31

초록

국내 육성 품종인 '매향' 딸기의 육묘 기간 중 광합성유효광량자속의 환경 조절을 통하여 러너 및 러너플랜트의 발생과 생산 효율을 증대시키고자 하였다. 딸기 육묘에 이용된 증식체의 엽수와 관부 직경은 각각 $3.1{\pm}0.4$$7.0{\pm}1.1mm$였다. 광합성유효광량자속을 각각 140, 210 및 $280{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$로 설정한 9기의 인공광 이용형 육묘 모듈에서 35일 동안 육묘하였다. 러너플랜트 생산 효율은 증식체당 일일 0.27주로 처리구 중 유의하게 가장 높았으며 관행의 딸기 육묘 방식의 러너플랜트 생산 효율과 비교하여도 크게 증진되었음을 확인하였다. 폐쇄형 육묘 시스템을 활용하여 육묘 기간 중의 PPF를 $280{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$로 조절하면 국내 육성 품종인 '매향'의 러너 발생 및 러너플랜트 생산을 증진시킬 수 있음이 확인되었다. 따라서 최근 국내에서 육성된 신품종 딸기의 급속 보급을 위한 증식체계 구축에 본 연구 기술이 활용되면 육성된 품종의 조급 보급이 가능할 것으로 판단된다.

The formation and elongation of runners, growth of runner plants, and transplant propagation rates of 'Maehyang' strawberry were investigated at various photosynthetic photon flux (PPF) levels. Strawberry plants having $3.1{\pm}0.4$ leaves and $7.0{\pm}1.1mm$ of crown diameter were used as propagules and were cultured for 35 days in 9 transplant production modules using fluorescent lamps as artificial lighting sources. Applied PPF levels were $137.4{\pm}2.1$, $217.0{\pm}1.0$, and $274.7{\pm}8.4{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ as measured on the surfaces of empty shelves. The numbers of runners and runner plants per propagule were the greatest at $280{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPF. The runner plant propagation rate was 0.27 plant/day/propagule at $280{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, which was significantly greater than that of conventional propagation methods. Results indicate that high PPF levels promotes the formation of runners and runner plants of strawberry and that the rapid propagation method with high PPF levels can be feasible for production of vigorous transplants in a closed transplant production system.

키워드

참고문헌

  1. Bish, E.B., D.J. Cantliffe, and C.K. Chandler. 2000. Strawberry daughter plant size alters transplant growth and development. Acta Hort. 533:121-125.
  2. Blanke, M.M. and D.T. Cooke. 2000. Respiration and plasma membrane ATPase in strawberry stolons. Plant Growth Regul. 30:163-170. https://doi.org/10.1023/A:1006314629955
  3. Boivin, C., A. Gosselin, and M.J. Trudel. 1987. Effect of supplementary lighting on transplant growth and yield of greenhouse tomato. HortScience 22:1266-1268.
  4. Bruggink, G.T. 1987. Influence of light on the growth of young tomato, cucumber and sweet pepper plants in the greenhouse: Calculating the effect of differences in light integral. Sci. Hort. 31:175-183. https://doi.org/10.1016/0304-4238(87)90044-6
  5. Cain, M.L. 1994. Consequences of foraging in clonal plant species. Ecology 75:933-944. https://doi.org/10.2307/1939417
  6. Chun, C. and T. Kozai. 2001. A closed type transplant production system, a hybrid of scaled-up micropropagation system and plant factory. J. Plant Biotechnol. 3:59-66.
  7. Darrow, G.M. 1936. Interrelation of temperature and photoperiodism in the production of fruit buds and runners in the strawberry. Proc. Amer. Soc. Hort. Sci. 34:360-363.
  8. de Oliveira, R.P., R.U. Brahm, and W.B. Scivittaro. 2007. Production of strawberry runners in greenhouse using hanging baskets. Hort. Brasileira 25:107-109. https://doi.org/10.1590/S0102-05362007000100021
  9. Dennis, F.G., J. Lipecki, and C.L. Kiang. 1970. Effects of photoperiod and other factors upon flowering and runner development of three strawberry cultivars. J. Amer. Soc. Hort. Sci. 95:750-754.
  10. Dressen, D.R. and R.W. Langhans. 1991. Uniformity of impatiens plug seedling growth in controlled environments. J. Amer. Soc. Hort. Sci. 116:786-791.
  11. Dressen, D.R. and R.W. Langhans. 1992. Temperature effects on growth of impatiens plug seedlings in controlled environments. J. Amer. Soc. Hort. Sci. 117:209-215.
  12. Fierro, A., N. Tremblay, and A. Gosselin. 1994. Supplemental carbon dioxide and light improved tomato and pepper seedling growth and yield. HortScience 29:152-154.
  13. Hancock, J. 1999. Strawberries. CABI Publishing, Wallingford, UK. p. 92.
  14. Hartmann, H.T., D.E. Kester, F.T. Davies, and R.L. Geneve. 1997. Plant propagation: Principles and practices. Prentice-Hall, Upper Saddle River, N.J. p. 21.
  15. Kim, T.I., W.S. Jang, J.H. Choi, M.H. Nam, W.S. Kim, and S.U. Lee. 2004. Breeding of strawberry 'Maehyang' for forcing culture. Kor. J. Hort. Sci. Technol. 22:434-437.
  16. Kim, T.I., W.S. Kim, J.H. Choi, W.S. Jang, and K.S. Seo. 1999. Comparison of runner production and growth characteristics among strawberry cultivars. Kor. J. Hort. Sci. Technol. 17: 111-114.
  17. Kinet, J., R.M. Sachs, and G. Bernier. 1985. Control by light. p. 64-88. In: The physiology of flowering. Vol. 3. CRC Press, Boca Raton, FL, USA.
  18. Knight, S.L. and C.A. Mitchell. 1983. Enhancement of lettuce yield by manipulation of light and nitrogen nutrition. J. Amer. Soc. Hort. Sci. 108:750-754.
  19. Kubota, C. and T. Kozai. 2001. Mathematical models for planning vegetative propagation under controlled environments. HortScience 36:15-19.
  20. Kurokura, T., T. Iwama, Y. Inaba, and N. Sugiyama. 2005. Effect of day-length on the developmental pattern of axillary buds in June-bearing strawberry plants. J. Hort. Sci. Biotechnol. 80:139-142.
  21. Masson, J., N. Tremblay, and A. Gosselin. 1991. Nitrogen fertilization and HPS supplementary lighting influence vegetable transplant production. I. Transplant Growth. J. Amer. Soc. Hort. Sci. 116:594-598.
  22. McCall, D. 1992. Effect of supplementary light on tomato transplant growth, and the after-effects on yield. Sci. Hort. 51:65-70. https://doi.org/10.1016/0304-4238(92)90104-K
  23. Morgan, J.V. 1971. The influence of supplementary illumination and $CO_2$ enrichment on the growth, flowering and fruiting of the tomato. Acta Hort. 22:187-199.
  24. Mortensen, L.M. and R. Moe. 1983. Growth responses of some greenhouse plants to environment. VI. Effect of $CO_2$ and artificial light on growth of Chrysanthemum morifolium Ramat. Sci. Hort. 19:141-147. https://doi.org/10.1016/0304-4238(83)90054-7
  25. Nicoll, M.F. and G.J. Galletta. 1987. Variation in growth and flowering habits of Junebearing and everbearing strawberries. J. Amer. Soc. Hort. Sci. 112:872-880.
  26. Smeets, L. 1955. Runner formation on strawberry plants in autumn and winter: II. Influence of the light intensity on the photoperiodical behaviour. Euphytica 4:240-244.
  27. Takeda, F. and S.C. Hokanson. 2003. Strawberry fruit and plug plant production in the greenhouse, p. 283-285. In: P. Hicklenton and J. Maas (eds.). Berry Crop Breeding, Production and Utilization for a New Century.
  28. Tremblay, N. and A. Gosselin. 1998. Effect of carbon dioxide enrichment and light. HortTechnoloy 8:524-528.
  29. Yanagi, T. and Y. Oda. 1993. Effect of photoperiod and chilling on floral formation of intermediate types between June- and everbearing strawberries. Acta Hort. 348:339-346.