Development of Agrobacterium-mediated Transformation Method for Domestically Bred Chrysanthemum Cultivar 'Moulinrouge' and Genetic Change of Leaf Morphology Using AtSICKLE Gene

아그로박테리움를 이용한 국내개발 국화품종 '무랑루즈'의 형질전환 기술 및 AtSICKLE 유전자를 이용한 엽형 변화 국화 형질전환체 개발

  • Kim, Yun-Hye (Department of Molecular Biotechnology, Dong-A University) ;
  • Park, Hyun-Myung (Department of Molecular Biotechnology, Dong-A University) ;
  • Jung, Ji-Yong (Department of Molecular Biotechnology, Dong-A University) ;
  • Kwon, Tack-Min (Department of Molecular Biotechnology, Dong-A University) ;
  • Jeung, Soon-Jae (Department of Molecular Biotechnology, Dong-A University) ;
  • Yi, Young-Byung (Department of Molecular Biotechnology, Dong-A University) ;
  • Kim, Gyung-Tae (Department of Molecular Biotechnology, Dong-A University) ;
  • Nam, Jae-Sung (Department of Molecular Biotechnology, Dong-A University)
  • 김윤혜 (동아대학교 분자생명공학과) ;
  • 박현명 (동아대학교 분자생명공학과) ;
  • 정지용 (동아대학교 분자생명공학과) ;
  • 권택민 (동아대학교 분자생명공학과) ;
  • 정순재 (동아대학교 분자생명공학과) ;
  • 이영병 (동아대학교 분자생명공학과) ;
  • 김경태 (동아대학교 분자생명공학과) ;
  • 남재성 (동아대학교 분자생명공학과)
  • Received : 2009.07.20
  • Accepted : 2010.03.04
  • Published : 2010.06.30

Abstract

'Moulinrouge' was selected as the best regenerating cultivar among 18 different spray-type chrysanthemum cultivars bred in the Gyeongnam Flowers Breeding Research Institute. When the leaf explants from standard- and spray-type chrysanthemum 'Jinba' and 'Moulinrouge' were incubated on MS basal medium supplemented with $0.5mg{\cdot}L^{-1}$ BA and $1.0mg{\cdot}L^{-1}$ NAA, both 'Jinba' and 'Moulinrouge' induced adventitious shoots that can be regenerated into plantlets. Based on these regeneration conditions, we developed an efficient $Agrobacterium$-mediated chrysanthemum 'Moulinrouge' transformation method by using sequential selection of shoots from low ($10mg{\cdot}L^{-1}$) to high ($30mg{\cdot}L^{-1}$) concentrations of kanamycin after co-cultivation of leaf explants with $Agrobacterium$ for 10 days and induction of shoots. All kanamycin resistant plants investigated with genomic PCR analysis carried the report gene, $AtSICKLE$, in their genome. Although expression levels of the report gene in the transgenic plants investigated with RT-PCR were relatively low because of inefficiency of CaMV 35S promoter in chrysanthemum, transgenic lines expressing $AtSICKLE$ efficiently showed leaf epinasty phenotype. We expect that our results will provide a useful method that can perform a high-throughput investigation of genes isolated and studied well in model plants for molecular breeding of chrysanthemum.

본 연구는 경남 화훼연구소에서 개발 육성된 스프레이형 국화 18 품종들에 대한 재분화율을 각각 조사하고, 그 중에서 '무랑루즈'가 가장 우수한 재분화 능력이 있음을 확인하였다. 특히 BA($0.5mg{\cdot}L^{-1}$)와 NAA($1.0mg{\cdot}L^{-1}$)를 함유한 MS배지를 신초재분화 배지로 이용함으로써 스탠다드형 국화인 신마와 함께 스프레이형 국화인 '무랑루즈'의 잎 절편체부터 효율적으로 신초 형성을 유도하고 완전한 식물체로 재분화시킬 수 있었다. 이러한 신초재분화 조건에서 '무랑루즈'잎 절편에 아그로박테리움을 감염하고 10일 동안 함께 배양한 후에, 선발항생제 kanamycin 농도를 저농도($10mg{\cdot}L^{-1}$)에서 고농도($30mg{\cdot}L^{-1}$)로 단계적으로 선발과정을 강화함으로써 효율적인 국화 형질전환체 제작이 가능하였다. 조사한 kanamycin 저항성 식물체 모두에서 전이유전자 $AtSICKLE$가 존재함을 genomic PCR 방법으로 확인하였다. 비록, 국화에서 그 기능이 비효율적인 CaMV 35S 프로모터를 사용했기 때문에 RT-PCR로 확인한 형질전환체에서의 전이유전자 $AtSICKLE$의 발현율은 상대적으로 낮았으나, 그 발현이 상대적으로 높은 개체에선 잎의 상편생장에 의한 엽형의 변화가 나타났다. 이러한 연구의 결과는 모델 식물체에서 분리되고 연구된 많은 유전자들이 가지는 화훼작물의 분자육종학적 가치를 국화에서 대량으로 조사할 수 있는 기반을 제공 할 것으로 기대된다.

Keywords

References

  1. Aida, R., K., S. Nagaya, K. Yoshida, S. Kishimoto, M. Shibata, and A. Ohmiya. 2005. Efficient transgenic expression in chrysanthemum, Chrysanthemum morifolium Ramat., with the promoter of a gene for tobacco elongation factor 1 $\alpha$ protein. Jpn. Agr. Res. Q. 39:269-274. https://doi.org/10.6090/jarq.39.269
  2. Aida, R., K. Ohira, Y. Tanaka, K. Yoshida, S. Kishimoto, M. Shibata, and A. Ohmiya. 2004. Efficient transgenic expression in chrysanthemum, Dendranthema grandiflorum (Ramat.) Kitamura, by using the promoter of a gene for chrysanthemum chlorophyll-a/b-binding protein. Breed. Sci. 54:51-58. https://doi.org/10.1270/jsbbs.54.51
  3. Boase, M.R., J.M. Bradley, and N.K. Borst. 1998. Genetic transformation by Agrobacterium tumefaciens of florist's chrysanthemum (Dendranthema grandiflorum) cultivar 'Peach Margaret'. In Vitro Cell. Dev. Biol. Plant 34:46-51.
  4. Byzova, M.V., J. Franken, M.G. Aats, J. de Almeida-Engler, G. Engler, M.M. Van Lookere Campagen, G.C. Angnent. 1999. Arabidopsis STARILE APETALA, a multifunctional gene regulating inflorescence, flower, and ovule development. Genes Dev. 12:1002-1014.
  5. Han, B.H., S.Y. Lee, and E.J. Hur. 2008. Selection of early flowering plants after transformation by a DgLsL anti-sense partial gene in chrysanthemum 'Zinba'. Kor. J. Hort. Technol. 26:64-69.
  6. Han, B.H., E.J. Suh, S.Y. Lee, H.K. Shin, and Y.P. Lim. 2007. Selection of non-branching lines induced by introducing Ls-like cDNA into chrysanthemum (Dendrathema x grandiflorum (Ramat.) Kitamura) "Shuho-no-chikara". Sci. Hort. 115:70-75. https://doi.org/10.1016/j.scienta.2007.07.012
  7. Lee, J.S., G.J. Lee, S.J. Chung, J.B. Kim, D.S. Kim, and S.Y. Kang. 2008. Effect of plant growth regulators on a shoot and root formation from the leaf and flower culture of a standardtype chrysanthemum 'Jinba'. Kor. J. Hort. Sci. Technol. 26:320-324.
  8. Narumi, T., R. Aida, A. Ohmiya, and S. Satoh. 2005. Transformation of chrysanthemum with mutated ethylene receptor genes: mDG-ERS1 transgenes conferring reduced ethylene sensitivity and characterization of the transformants. Postharvest Biol. Technol. 37:101-110. https://doi.org/10.1016/j.postharvbio.2005.04.008
  9. Ohmiya, A., S. Kishimoto, R. Aide, S. Yoshioka, and K. Sumitomo. 2006. Carotenoid cleavage Dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol. 142:1193-1201. https://doi.org/10.1104/pp.106.087130
  10. ParK, I.S., G.J. Lee, D.S. Kim, S.J. Chung, J.B. Kim, H.S. Song, D.H. Goo, S.Y. Kang. 2007. Mutation breeding of a spray chrysanthemum 'Argos' by gamma-ray irradiation and tissue culture. Flower Res. J. 15:52-57.
  11. Satoh, S., M. Watanabe, K. Chisaka, and T. Narumi. 2008. Suppressed leaf senescence in chrysanthemum transformed with a mutated ethylene receptor gene mDG-ERS1(etr1-4). J. Plant Biol. 51:424-427. https://doi.org/10.1007/BF03036064
  12. Soh, H.S., Y.H. Han, G.Y. Lee, J.W. Lim, B.Y. Yi, Y.H. Lee, G.W. Choi, and Y.D. Park. 2009. Transformation of Chrysanthemum morifolium with insecticidal gene (Cry1Ac) to develop pest resistance. Hort. Environ. Biotechnol. 50:57-62.
  13. Seo, J., S.W. Kim, J. Kim, H.W. Cha, and J.R. Liu. 2007. Co-expression of flavonoid 3',5'-hydroxylase and flavonoid 3'-hydroxylase accelerates decalorization in transgenic chrysanthemum petals. J. Plant Biol. 50:636-631. https://doi.org/10.1007/BF03030607
  14. Takatsu, Y., Y. Nishizawa, T. Hibi, and F. Sakuma. 1999. Transgenic chrysanthemum (Dendranthema x grandiflorum (Ramat.) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea). Sci. Hort. 82:113-123. https://doi.org/10.1016/S0304-4238(99)00034-5
  15. Takatsu, Y., H. Tomotsune, M. Kasumi, and F. Sakuma. 1998. Difference in adventitious shoot regeneration capacity among Japanese chrysanthemum (Dendranthema x grandiflorum (Ramat.) Kitamura) cultivar and the improved protocol for Agrobacterium-mediated genetic transformation. J. Jpn. Soc. Hort. Sci. 67:958-964. https://doi.org/10.2503/jjshs.67.958
  16. Teixeira da Silva, J.A. 2003. Chrysanthemum: advances in tissue culture, cryopreservation, postharvest technology, genetics and transgenic biotechnology. Biotechnol. Adv. 21:715-766. https://doi.org/10.1016/S0734-9750(03)00117-4
  17. Teixeira da Silva, J.A. 2006. Chrysanthemum (Dendranthema x grandiflora), p. 321-329. In: Wang, K. (eds.). Agrobacterium protocols. Vol. 2. Humana Press Inc.
  18. Urbran, L.A., J.M. Sherman, J.W. Moyer, and M.E. Daub. 1994. High efficiency shoot regeneration and Agrobacterium-mediated transformation of chrysanthemum (Dendranthema grandiflora). Plant Sci. 98:69-79. https://doi.org/10.1016/0168-9452(94)90149-X