• Title/Summary/Keyword: epinasty

Search Result 15, Processing Time 0.019 seconds

Changes of Plant Growth, Leaf Morphology and Cell Elongation of Spinacia oleracea Grown under Different Light-Emitting Diodes (발광다이오드 광원에 따른 시금치 생육, 엽 형태형성 및 세포길이 변화)

  • Lee, Myungok;Park, Sangmin;Cho, Eunkyung;An, Jinhee;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.222-230
    • /
    • 2018
  • This study aimed to determine effects of light-emitting diodes on plant growth, leaf morphology and cell elongation of two cultivars ('World-star' and 'Sushiro') of Spinacia oleracea. Plants were grown in a NFT system for 25 days after transplanting (DAT) under the LEDs [White (W), Red and Blue (RB, ratio 2:1), Blue (B), Red (R) LED] under the same light intensity and photoperiod ($130{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 12 hours). The 'World-star' variety was significantly higher in shoot fresh and dry weights, leaf number, and leaf area than the 'Sushiro' variety. For the 'World-star' variety, the two treatments of mixed light (RB) and red light (R) showed a 35% higher shoot dry weight than that of blue light (B) and white light (W) at 25 DAT. In the 'Sushiro' variety, mixed light (RB) treatment, which had the highest shoot fresh and dry weights, showed 40% higher than the white light (W) treatment, which had the lowest shoot fresh and dry weights. Both varieties showed leaf epinasty symptom at 21 DAT only in both mixed light (RB) and red light (R), and red light (R) treatment showed significantly higher symptom than mixed light (RB), indicating the leaf epinasty is associated with red light. Microscopic observations of the cell size in the leaf center and edge parts showed that the cell density of leaf edge under the red light (R) was lower than that in leaf center, supporting previous reports that suggest an association of the cell size difference between the leaf center and edge with the leaf epinasty occurrence. Since the blue light (B) plays a role in alleviating the epinasty symptom caused by the red light (R), it seems necessary to identify the appropriate mixing ratio of the two light sources. In addition, the World-star variety seems to be more suitable for the cultivation of plant factory using LED light sources.

Detection and Genomic Analysis of Viroid-like RNA Molecules Isolated from Korean Peonies (한국산 작약에서 분리한 바이로이드 유사 RNA 분자의 확인과 유전자 분석)

  • 정동수;김무인;이재열
    • Korean Journal Plant Pathology
    • /
    • v.13 no.2
    • /
    • pp.113-117
    • /
    • 1997
  • Low moleuclar weight (LMW) RNAs were isolated form Korean peonies which expressed symptoms of stunt and epinasty. The LMW plant RNAs were purified by Qiagen column chromatography which could separate viroid specific nucleic acid at differential salt concentration. After the inoculation of the purified RNAs from the peonies, the inoculated tomatoes (cv. Rutgers) expressed the symptoms of stunt and epinasty. Also the same molecular weight RNAs with viroid-like RNAs were isolated from the inoculated tomatoes. Double-stranded cDNA were synthesized by the methods of reverse transcription (RT) and polymerase chain reaction (PCR) with the purified RNA and primers. The same cDNAs associated with viroid-like RNAs wre cloned from the inoculated tomatoes. The cDNA has been sequenced and its 375-nucleotides were arranged into secondary structure. The cloned cDNA showed 47~54% homology compared with other viroids. The sequence homology of the cloned cDNA were partially high with plant genomic RNAs.

  • PDF

Ethylene-Induced Auxin Sensitivity Changes in Petiole Epinasty of Tomato Mutant dgt

  • Chang, Soo Chul;Lee, Myung Sook;Lee, Sang Man;Kim, Jinseok;Kang, Bin G.
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.257-262
    • /
    • 1994
  • The tomato (Lycopersicon esculentum Mill.) mutant diageotropica (dgt) lacking normal gravitropic response is known to be less sensitive to auxin compared with its isogenic parent VFN8. Straight growth as well as ethylene production in response to added auxin in hypocotyl segments of dgt was negligible. However, there was no significant difference between the two genotypes in auxin transport in petiole segments and its inhibition by the phytotropin N-1-naphthylphthalamic acid(NPA). Kinetic parameters of NPA binding to microsomal membranes were also non-distinguishable between the two. Its petiolar explants treated with ethylene developed epinastic curvature with the magnitude of response increased about 3 folds over non-mutant wild type. Ethylene-induced epinasty in both dgt and VFN8 was nullified by treatment of explants with the ethylene autagonist 2,5-norbonadiene. Lateral transport of 3H-IAA toward the upper side of ethylene-treated petioles in dgt, however, was not significantly more pronounced than in VFN8, the implications being that auxin sensitivity in the mutant was restored, or even rised above the wild type, by ethylene.

  • PDF

Effect of a Combined Treatment with Uniconazole, Silver Thiosulfate on Reduction of Ozone Injury in Tomato Plant (Uniconazole 과 Silver Thiosulfate 의 복합처리가 토마토의 오존피해경감에 미치는 효과)

  • Ku, Ja-Hyeong;Won, Dong-Chan;Kim, Tae-Il;Krizek, Donld T.;Mirecki, Roman M.
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.1
    • /
    • pp.50-58
    • /
    • 1992
  • Studies were conducted to determine the combined effect of uniconazole [(E) -1-(4-chlorophenyl)-4, 4-demethyl 2-(1,2,4 triazol-1-yl)-1-penten-3-ol] and silver thiosulfate $[Ag {(S_2O_3)}^3\;_2-]$ (STS) on reduction of ozone injury in tomato plants(Lycopersicon esculentum Mill. 'Pink Glory'). Plants were given a 50ml soil drench of uniconazole at concentrations of 0, 0.001, 0.01 and 0.1 mg/pot at the stage of emerging 4th leaf. Two days prior to ozone fumigation, STS solution contained 0.05% Tween-20 was also sprayed at concentrations of 0, 0.3 and 0.6 mM. Uniconazole at 0.01 mg/pot and STS at 0.6 mM were effective in providing protection against ozone exposure(20h at 0.2ppm) without severe retardation of plant height and chemical phytotoxicity, respectively. Combined treatment with uniconazole, STS significantly reduced ozone injury at the lower concentration than a single treatment with uniconazole or STS. Uniconazole treatment reduced plant height, stem elongation and transpiration rate on a whole plant level and increased chlorophyll concentration. STS did not give any effect on plant growth and chlorophyll content but increased transpiration rate in non-ozone-fumigated plants. Ethylene production in the leaves of ozone-fumigated plants was decreased by uniconazole and STS pretreatment, but there was no protective effect on epinasty of leaves in uniconazole-treated plants. STS increased ethylene production in non-ozone-fumigated plants, but it significantly reduced the degree of epinasty and defoliation of cotyledons when plants were exposed to ozone. Uniconazole slightly increased superoxide dismutase and peroxidase activities. But STS showed little or no effects on such free radical scavengers. Day of flowering after seeding was shortened and percentages of fruit set were increased by uniconazole treatment. STS was highly effective on protecting reduction of fruit set resulting from ozone fumigation. These results suggest that combined use of uniconazole and STS should provide miximum protection against ozone injury without growth retardation resulting in yield loss.

  • PDF

Detection of Viroid-like RNA Molecules in Korean Peonies (Paeonia lactiflora) (한국산 작약(Paeonia lactiflora)으로부터 바이로이드 유사 RNA 분자의 검출)

  • ;H. L. S nger
    • Korean Journal Plant Pathology
    • /
    • v.13 no.1
    • /
    • pp.1-4
    • /
    • 1997
  • Viroid-like RNA molecules were detected from the low molecular weight RNAs isolated from the Korean peonies which showed typical viroid symptoms of epinasty and dwarfing. Low molecular weight RNAs including viroid RNA molecules were purified by the Qiagen anion exchange minicolumns. Viroid-like RNA molecules showed a single viroid specific band in the native polyacrylamide gel. They were separated into two bands in the denaturing gel conditions. The band of circular form of viroid-like RNAs was crossed over the horizontal band of the linear form of viroid-like RNA molecules in 0~8 M urea gradient gel under the denaturing conditions of 37$^{\circ}C$. The two circular forms of viroid-like RNA molecules were detected in the reverse polyacrylamide gel electrophoresis. The viroid-like RNA molecules purified from the peonies were supposed to be unidentified viroid RNA molecules.

  • PDF

Plant Growth and Ascorbic Acid Content of Spinacia oleracea Grown under Different Light-emitting Diodes and Ultraviolet Radiation Light of Plant Factory System (식물공장시스템의 발광다이오드와 UVA 광원 하에서 자란 시금치 생육 및 아스코르브산 함량)

  • Park, Sangmin;Cho, Eunkyung;An, Jinhee;Yoon, Beomhee;Choi, Kiyoung;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • The study aimed to determine effects of light emitting diode (LED) and the ultraviolet radiation (UVA) light of plant factory on plant growth and ascorbic acid content of spinach (Spinacia oleracea cv. Shusiro). Plants were grown in a NFT (Nutrient Film Technique) system for 28 days after transplanting with fluorescent light (FL, control), LEDs and UVA (Blue+UVA (BUV), Red and Blue (R:B(2:1)) + UVA (RBUV), Red+UVA (RUV), White LED (W), Red and Blue (R:B(2:1)), Blue (B), Red (R)) under the same light intensity ($130{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and photoperiod (16/8h = day/night). All the light sources containing the R (R, RB, RUV, and RBUV) showed leaf epinasty symptom at 21 days after transplanting (DAT). Under the RUV treatment, the lengths of leaf and leaf petiole were significantly reduced and the leaf width was increased, lowering the leaf shape index, compared to the R treatment. Under the BUV, however, the lengths of leaf and leaf petiole were increased significantly, and the leaf number was increased compared to B. Under the RBUV treatment, the leaf length was significantly shorter than other treatments, while no significant difference between the RBUV and RB for the fresh and dry weights and leaf area. Dry weights at 28 days after transplanting were significantly higher in the R, RUV and BUV treatments than those in the W and FL. The leaf area was significantly higher under the BUV treatment. The ascorbic acid content of the 28 day-old spinach under the B was significantly higher, followed by the BUV, and significantly lower in FL and R. All the integrated data suggest that the BUV light seems to be the most suitable for growth and quality of hydroponically grown spinach in a plant factory.

Effectiveness of Uniconazole(XE-1019) Treatment in Reducing Ozone Injury to Tomato Plant (Uniconazole(XE-1019) 처리가 토마토의 오존피해경감에 미치는 효과)

  • Won, Dong-Chan;Ku, Ja-Hyeong;KIm, Tae-Il
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.1
    • /
    • pp.41-49
    • /
    • 1992
  • To determine the efficacy of uniconzaole[(E)-1-(4-chlorophenyl)-4,4-dimethy 2-(1,2,4-triazol-1-yl)-1-penten-3-ol)](XE-1019) as a phytoprotectant against $O_3$ injury in tomato plants(Lycopersicon esculentum Mill. 'Pink Glory'), plants were given a 50ml soil drench of uniconazole solution at concentrations of 0.001, 0,01, 0.1 and 0.2mg/pot thirteen days prior to $O_3$ fumigation. All four uniconazole concentrations were effective in providing protection against $O_3$ exposure(16h at 0.3 ppm). Uniconazole treatment above 0.001 mg/pot significantly reduced stem elongation, leaf enlargement, leaf area and fresh weight of plant, whereas increased chlorophyll concentration. Transpiration rate on a whole plant basis was reduced by uniconazole treatment and $O_3$ exposure. Uniconazole reduced ethylene production induced by $O_3$ injury but had little or no effect on defoliation of cotyledons and leaf epinasty. Activities of peroxidase (POD) and superoxide dismutase(SOD) were slightly increased by application of uniconazole. With increasing exposure time, $O_3$ increased POD activity but decreased SOD activity. The phytoprotective effects of uniconazole were diminished by applying gibberellin at $10{\sim}20$ ppm. These results suggest that the phytoprotective effects of uniconazole are related to its role of increasing activities of free radical scavengers such as POD and SOD, in addition to growth-retardation as an anti-gibberellin.

  • PDF

Effectiveness of Silver Thiosulfate Treatment in Reducing Ozone Injury to Tomato Plants (Silver Thiosulfate 처리가 토마토의 오존피해경감에 미치는 효과)

  • 구자형;원동찬;김태일
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.7-12
    • /
    • 1992
  • This study was conducted to determine the effectiveness of silver thiosulfate(STS) in reducing $O_3$ injury to tomato plants(Lycopersicon esculentm Mill. 'Pink Glory'). Two days prior to $O_3$ fumigation, plants were given a foliar spray of STS solution at concentrations of 0, 0.2, 0.4, 0.6 mM contained with 0.05% Tween-20. STS concentrations below 0.6 mM were significantly effective in providing protection aginst $O_3$ exposure(16 h at 0.3 ppm). STS reduced leaf injury rate, defoliation of cotyledons, ethylene production and degree of epinasty induced by $O_3$ injury. STS slightly increased ethylene production in non-$O_3$-fumigated plants, but changes of chlorophyll content and transpiration rate on a whole plant basis were not observed. In $O_3$-fumigated plants, STS treatment reduced chlorophyll destruction but did not affect transpiration rate. STS treatment seemed not to affect peroxidase(POD) and superoxide dismutase (SOD) activity in non-fumigated plants but reduced increasing activity of POD by $O_3$ fumigation. However, such an effect as above was not found in SOD activity. Even though enzymatic protection effects were not confirmed, the fact that reduction of acute injury rate was attained for 16 h fumigation indicates that the phytoprotective effects of STS are not necessarily related to blocking the action of strees-induced-ethylene as an anti-ethylene agent.

  • PDF

EFFECTS OF GAS EXHAUSTED FROM GASOLINE ENGINE ON PLANTS GROWN IN THE GREENHOUSE

  • Sugimoto, H.;Yamashita, J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.487-494
    • /
    • 1993
  • In order to establish a fully automatized pest control in the a greenhouse , the authors developed a prototype of microcomputer installed spraying vehicle which traveled along the furrows. Since a power sprayer mounted on the vehicle was driven by gasoline engine, plants grown in the greenhouse might be injured by the gas exhausted from the engine. Thus , effects of exhausted gas on photosynthetic rate and the shedding of flowers and buds of plants were examined. At first, effects of exhausted gas on photosynthetic rate of potted sweet pepper (Capsicum annuum L.) and eggplant(Solanum melongena L.) plants were examined. In a closed vinyl house the engine was operated for 5 minutes and plants were exposed to the gas for 2hours in the daytime on a fine day. Photosynthetic rate did not significantly decreased by the treatment in both species. Secondly, effects of ehtylene on the shedding of flowers and buds of sesame (Sesamum indicum L. ) were examined. In the closed and partiall opened vinyl house, the engine was operated for 5 minutes and potted sesame plants were exposed to the gas for 12 hours in the night. In partially opened vinyl house, ethylene concentration decreased to 0 ppm 3 hours after the engine was stopped and flower and bud did not shed. In contrast, when vinyl house was closed ethylene concentration was 0.75 pm even 12 hours after the engine was stopped and flowers and buds shed markedly and epinasty was observed in upper young leaves. As mentioned above , it was revealed that injury of plants in the greenhouse caused by the gas exhausted from a gasoline engine could be prevented by providing suitable ventilation.

  • PDF

Overexpression of the Downward Leaf Curling (DLC) Gene from Melon Changes Leaf Morphology by Controlling Cell Size and Shape in Arabidopsis Leaves

  • Kee, Jae-Jun;Jun, Sang Eun;Baek, Seung-A;Lee, Tae-Soo;Cho, Myung Rae;Hwang, Hyun-Sik;Lee, Suk-Chan;Kim, Jongkee;Kim, Gyung-Tae;Im, Kyung-Hoan
    • Molecules and Cells
    • /
    • v.28 no.2
    • /
    • pp.93-98
    • /
    • 2009
  • A plant-specific gene was cloned from melon fruit. This gene was named downward leaf curling (CmDLC) based on the phenotype of transgenic Arabidopsis plants overexpressing the gene. This expression level of this gene was especially upregulated during melon fruit enlargement. Overexpression of CmDLC in Arabidopsis resulted in dwarfism and narrow, epinastically curled leaves. These phenotypes were found to be caused by a reduction in cell number and cell size on the adaxial and abaxial sides of the epidermis, with a greater reduction on the abaxial side of the leaves. These phenotypic characteristics, combined with the more wavy morphology of epidermal cells in overexpression lines, indicate that CmDLC overexpression affects cell elongation and cell morphology. To investigate intracellular protein localization, a CmDLC-GFP fusion protein was made and expressed in onion epidermal cells. This protein was observed to be preferentially localized close to the cell membrane. Thus, we report here a new plant-specific gene that is localized to the cell membrane and that controls leaf cell number, size and morphology.