DOI QR코드

DOI QR Code

Axenic purification and cultivation of an Arctic cyanobacterium, Nodularia spumigena KNUA005, with cold tolerance potential for sustainable production of algae-based biofuel

  • Hong, Ji-Won (Department of Biology, Kyungpook National University) ;
  • Choi, Han-Gu (Division of Polar Biology & Ocean Sciences, Korea Polar Research Institute (KOPRI)) ;
  • Kang, Sung-Ho (Division of Polar Biology & Ocean Sciences, Korea Polar Research Institute (KOPRI)) ;
  • Yoon, Ho-Sung (Department of Biology, Kyungpook National University)
  • Received : 2010.04.10
  • Accepted : 2010.05.14
  • Published : 2010.06.15

Abstract

A psychrotolerant cyanobacterium, Nodularia spumigena KNUA005, was isolated from a cyanobacterial bloom sample collected near Dasan Station in Ny-${\AA}lesund$, Svalbard Islands during the Arctic summer season. To generate an axenic culture, the isolate was subjected to three purification steps: centrifugation, antibiotic treatment and streaking. The broad antibacterial spectrum of imipenem killed a wide range of heterotrophic bacteria, while the cyanobacterium was capable of enduring both antibiotics, the remaining contaminants that survived after treatment with imipenem were eliminated by the application of an aminoglycoside antibiotic, kanamycin. Physical separation by centrifugation and streaking techniques also aided axenic culture production. According to the cold-tolerance test, this mat-forming cyanobacterium was able to proliferate at low temperatures ranging between 15 and $20^{\circ}C$ which indicates the presence of cold-tolerance related genes in N. spumigena KNUA005. This suggests the possibility of incorporating cold-resistance genes into indigenous cyanobacterial strains for the consistent production of algae-based biofuel during the low-temperature seasons. Therefore, it is needed to determine the cold-tolerance mechanisms in the Arctic cyanobacterium in the next research stage.

Keywords

References

  1. Benemann, J. R. 2008. Opportunities and challenges in algae biofuels production. Available from: http://www.fao.org/uploads/media/algae_positionpaper.pdf. Accessed 2 Apr 2010.
  2. Bolch, C. J. S. & Blackburn, S. I. 1996. Isolation and purification of Australian isolates of the toxic cyanobacterium Microcystis aeruginosa Kutz. J. Appl. Phycol. 8:5-13. https://doi.org/10.1007/BF02186215
  3. Carmichael, W. W., Eschedor, J. T., Patterson, G. M. L. & Moore, R. E. 1988. Toxicity and partial structure of a hepatotoxic peptide produced by the cyanobacterium Nodularia spumigena Mertens emend. L575 from New Zealand. Appl. Environ. Microbiol. 54:2257-2263.
  4. Chevalier, P., Proulx, D., Lessard, P., Vincent, W. F. & de la Noue, J. 2000. Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J. Appl. Phycol. 12:105-112. https://doi.org/10.1023/A:1008168128654
  5. Choi, G. G., Bae, M. S., Ahn, C. Y. & Oh, H. M. 2008. Induction of axenic culture of Arthrospira (Spirulina) platensis based on antibiotic sensitivity of contaminating bacteria. Biotechnol. Lett. 30:87-92. https://doi.org/10.1007/s10529-007-9523-2
  6. Codd, G. A., Steffensen, D. A., Burch, M. D. & Baker, P. D. 1994. Toxic blooms of cyanobacteria in Lake Alexandrina, South Australia: learning from history. Aust. J. Mar. Freshwater Res. 45:731-736. https://doi.org/10.1071/MF9940731
  7. Ferris, M. J. & Hirsch, C. F. 1991. Method for isolation and purification of cyanobacteria. Appl. Environ. Microbiol. 57:1448-1452.
  8. Horne, A. J. & Galat, D. L. 1985. Nitrogen fixation in an oligotrophic, saline desert lake: Pyramid Lake, Nevada. Limnol. Oceanogr. 30:1229-1239. https://doi.org/10.4319/lo.1985.30.6.1229
  9. Huber, A. L. 1986. Nitrogen fixation by Nodularia spumigena Mertens (Cyanobacteriaceae). 1: Field studies and the contribution of blooms to the nitrogen budget of the Peel-Harvey Estuary, Western Australia. Hydrobiologia 131:193-203. https://doi.org/10.1007/BF00008855
  10. Lane, D. J. 1991. 16S/23S rRNA sequencing. In Stackebrandt, E. & Goodfellow, M. (Eds.) Nucleic Acid Techniques in Bacterial Systematics. Jones Wiley & Sons, Chichester, pp. 115-148.
  11. Neilan, B. A., Jacobs, D. & Goodman, A. E. 1995. Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl. Environ. Microbiol. 61:3875-3883.
  12. Nubel, U., Garcia-Pichel, F. & Muyzer, G. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63:3327-3332.
  13. Rippka, R. 1988. Isolation and purification of cyanobacteria. Methods Enzymol. 167:3-27. https://doi.org/10.1016/0076-6879(88)67004-2
  14. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111:1-61. https://doi.org/10.1099/00221287-111-1-1
  15. Rudi, K., Skulberg, O. M. & Jakobsen, K. S. 1998. Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J. Bacteriol. 180:3453-3461.
  16. Runnegar, M. T. C., Jackson, A. R. B. & Falconer, I. R. 1988. Toxicity of the cyanobacterium Nodularia spumigena Mertens. Toxicon 26:143-151. https://doi.org/10.1016/0041-0101(88)90166-3
  17. Sheehan, J., Dunahay, T., Benemann, J. & Roessler, P. 1998. A look back at the U.S. Department of Energy's Aquatic Species Program: biodiesel from algae. National Renewable Energy Laboratory, Golden, CO, 328 pp.
  18. Sivonen, K., Kononen, K., Esala, A. I. & Niemela, S. I. 1989. Toxicity and isolation of the cyanobacterium Nodularia spumigena from the southern Baltic Sea in 1986. Hydrobiologia 185:3-8. https://doi.org/10.1007/BF00006062
  19. Tang, E. P. Y., Tremblay, R. & Vincent, W. F. 1997. Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature? J. Phycol. 33:171-181. https://doi.org/10.1111/j.0022-3646.1997.00171.x

Cited by

  1. Multiple adaptations to polar and alpine environments within cyanobacteria: a phylogenomic and Bayesian approach vol.6, 2015, https://doi.org/10.3389/fmicb.2015.01070
  2. Is production of protease inhibitors from cyanobacteria nutrient dependent? Comparison of protease inhibitory activities in three species of Oscillatoria isolated from Central India vol.6, pp.4, 2014, https://doi.org/10.1007/s40071-014-0081-7
  3. Research and development for algae-based technologies in Korea: a review of algae biofuel production vol.123, pp.3, 2015, https://doi.org/10.1007/s11120-014-9974-y
  4. Growth Promotion of Pavlova viridis by Bacteria Isolated from the Microalga vol.25, pp.5, 2015, https://doi.org/10.5352/JLS.2015.25.5.568
  5. Modern methods for isolation, purification, and cultivation of soil cyanobacteria vol.85, pp.4, 2016, https://doi.org/10.1134/S0026261716040159
  6. Comparative Lipidomic Profiling of TwoDunaliella tertiolectaStrains with Different Growth Temperatures under Nitrate-Deficient Conditions vol.63, pp.3, 2015, https://doi.org/10.1021/jf502967k
  7. Assessing the antibiotic susceptibility of freshwater Cyanobacteria spp. vol.6, 2015, https://doi.org/10.3389/fmicb.2015.00799
  8. Establishment and maintenance of an axenic culture of Ettlia sp. using a species-specific approach vol.20, pp.6, 2015, https://doi.org/10.1007/s12257-015-0289-4
  9. Cyanobacterial inoculation (cyanobacterisation): Perspectives for the development of a standardized multifunctional technology for soil fertilization and desertification reversal vol.171, 2017, https://doi.org/10.1016/j.earscirev.2017.05.006
  10. Genome Features and Biochemical Characteristics of a Robust, Fast Growing and Naturally Transformable Cyanobacterium Synechococcus elongatus PCC 11801 Isolated from India vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-34872-z
  11. Blooms of Toxic Cyanobacterium Nodularia spumigena in Norwegian Fjords During Holocene Warm Periods vol.12, pp.4, 2010, https://doi.org/10.3390/toxins12040257