DOI QR코드

DOI QR Code

NTAㆍNi2+-Functionalized Quantum Dots for VAMP2 Labeling in Live Cells

  • Received : 2010.03.08
  • Accepted : 2010.04.08
  • Published : 2010.06.20

Abstract

An efficient method for labeling individual proteins in live cells is required for investigations into biological mechanisms and cellular processes. Here we describe the preparation of small quantum dots (QDs) that target membrane surface proteins bearing a hexahistidine-tag ($His_6$-tag) via specific binding to an nitrilotriacetic acid complex of nickel(II) ($NTA{\cdot}Ni^{2+}$) on the QD surfaces. We showed that the $NTA{\cdot}Ni^{2+}$-QDs bound to His-tag functionalized beads as a cellular mimic with high specificity and that QDs successfully targeted $His_6$-tagged vesicle-associated membrane proteins (VMAP) on cell surfaces. This strategy provides an efficient approach to monitoring synaptic protein dynamics in spatially restricted and confined biological environments.

Keywords

References

  1. Dahan, M.; Levi, S.; Luccardini, C.; Rostaing, P.; Riveau, B.; Triller, A. Science 2003, 302, 442. https://doi.org/10.1126/science.1088525
  2. Courty, S.; Luccardini, C.; Bellaiche, Y.; Cappello, G.; Dahan, M. Nano Lett. 2006, 6, 1491. https://doi.org/10.1021/nl060921t
  3. Maria, M. B.; Luciana, B.; Donna J., A.-J.; Thomas, M. J.; Lia, I. P. FEBS Lett. 2007, 581, 2905. https://doi.org/10.1016/j.febslet.2007.05.041
  4. Green, N. M. Methods Enzymol. 1990, 184, 51. https://doi.org/10.1016/0076-6879(90)84259-J
  5. Groc, L.; Lafourcade, M.; Heine, M.; Renner, M.; Racine, V.; Sibarita, J.-B.; Lounis, B.; Choquet, D.; Cognet, L. J. Neurosci. 2007, 27, 12433. https://doi.org/10.1523/JNEUROSCI.3349-07.2007
  6. Howarth, M.; Takao, K.; Hayashi, Y.; Ting, A. Y. Proc. Natl. Acad. Sci. USA 2005, 102, 7583. https://doi.org/10.1073/pnas.0503125102
  7. Howarth, M.; Liu, W.; Puthenveetil, S.; Zheng, Y.; Marshall, L. F.; Schmidt, M. M.; Wittrup, K. D.; Bawendi, M. G.; Ting, A. Y. Nat. Methods 2008, 5, 397. https://doi.org/10.1038/nmeth.1206
  8. Dif, A.; Boulmedais, F.; Pinot, M.; Roullier, V.; Baudy-Floc'h, M.; oquelle, F. M.; Clarke, S.; Neveu, P.; Vignaux, F.; Le Borgne, R.; Dahan, M.; Gueroui, Z.; Marchi-Artzner, V. J. Am. Chem. Soc. 2009, 131, 14738. https://doi.org/10.1021/ja902743u
  9. Porath, J.; Carlsson, J.; Olsson, I.; Belfrage, G. Nature 1975, 258, 598. https://doi.org/10.1038/258598a0
  10. Guignet, E. G.; Hovius, R.; Vogel, H. Nat. Biotechnol. 2004, 22, 440. https://doi.org/10.1038/nbt954
  11. Kapanidis, A. N.; Ebright, Y. W.; Ebright, R. H. J. Am. Chem. Soc. 2001, 123, 12123. https://doi.org/10.1021/ja017074a
  12. Keller, T. A. Supramolecular Science 1995, 2, 155. https://doi.org/10.1016/0968-5677(96)89670-2
  13. Uchinomiya, S. H.; Nonaka, H.; Fujishima, S. H.; Tsukiji, S.; Ojida, A.; Hamachi, I. Chem. Commun. 2009, 39, 5880.
  14. Hainfeld, J. F.; Liu, W.; Halsey, C. M.; Freimuth, P.; Powell, R. D. J. Struct. Biol. 1999, 127, 185. https://doi.org/10.1006/jsbi.1999.4149
  15. Kim, J.; Park, H. Y.; Kim, J.; Ryu, J.; Kwon, do Y.; Grailhe, R.; Song, R. Chem. Commun. 2008, 16, 1910.
  16. Chen, Y. A.; Scheller, R. H. Nat. Rev. Mol. Cell. Biol. 2001, 2, 98. https://doi.org/10.1038/35052017
  17. Howarth, M.; Liu, W.; Puthenveetil, S.; Zheng, Y.; Marshall, L. F.; Schmidt, M. M.; Wittrup, K. D.; Bawendi, M. G.; Ting, A. Y. Nat. Methods 2008, 5, 397. https://doi.org/10.1038/nmeth.1206
  18. Keppler, A.; Gendreizig, S.; Gronemeyer, T.; Pick, H.; Vogel, H.; Johnsson, K. Nat. Biotechnol. 2003, 21, 86. https://doi.org/10.1038/nbt765
  19. George, N.; Pick, H.; Vogel, H.; Johnsson, N.; Johnsson, K. J. Am. Chem. Soc. 2004, 126, 8896. https://doi.org/10.1021/ja048396s
  20. Lata, S.; Gavutis, M.; Tampé, R.; Piehler, J. Am. Chem. Soc. 2006, 128, 2365. https://doi.org/10.1021/ja0563105
  21. Lee, I. S.; Lee, N.; Park, J.; Kim, B. H.; Yi, Y. W.; Kim, T.; Kim, T.; Lee, I. H.; Paik, S. R.; Hyeon, T. J. Am. Chem. Soc. 2006, 128, 10658. https://doi.org/10.1021/ja063177n
  22. Xu, C.; Xu, K.; Gu, H.; Zhong, X.; Guo, Z.; Zheng, R.; Zhang, X.; Xu, B. J. Am. Chem. Soc. 2004, 126, 3392. https://doi.org/10.1021/ja031776d
  23. Lee, K. B.; Park, S.; Mirkin, C. A. Angew. Chem. Int. Ed. 2004, 43, 3048. https://doi.org/10.1002/anie.200454088
  24. Pathak, S.; Choi, S. K.; Arnheim, N.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4103. https://doi.org/10.1021/ja0058334
  25. Jamieson, T.; Bakhshi, R.; Petrova, D.; Pocock, R.; Imani, M.; Seifalian, A. M. Biomaterials Review 2007, 28, 4717. https://doi.org/10.1016/j.biomaterials.2007.07.014
  26. Liu, W.; Howarth, M.; Greytak, A. B.; Zheng, Y.; Nocera, D. G.; Ting, A. Y.; Bawendi, M. G. J. Am. Chem. Soc. 2008, 130, 1274. https://doi.org/10.1021/ja076069p
  27. Medintz, I. L.; Clapp, A. R.; Brunel, F. M.; Tiefenbrunn, T.; Uyeda, H. T.; Chang, E. L.; Deschamps, J. R.; Dawson, P. E.; Mattoussi, H. Nat. Mater. 2006, 5, 581. https://doi.org/10.1038/nmat1676