DOI QR코드

DOI QR Code

Wafer-level Fabrication of Ball Lens by Cross-cut and Reflow of Wafer-bonded Glass on Silicon

  • Lee, Dong-Whan (Department of Physics, Chonnam National University) ;
  • Oh, Jin-Kyung (Department of Physics, Chonnam National University) ;
  • Choi, Jun-Seok (Department of Physics, Chonnam National University) ;
  • Lee, Hyung-Jong (Department of Physics, Chonnam National University) ;
  • Chung, Woo-Nam (Department of Mechanical Engineering, Chonnam National University)
  • 투고 : 2010.04.13
  • 심사 : 2010.05.20
  • 발행 : 2010.06.25

초록

Novel wafer-level fabrication of a glass ball-lens is realized for optoelectronic applications. A Pyrex wafer is bonded to a silicon wafer and cross-cut into a square-tile pattern, followed by wet-etching of the underlying silicon. Cubes of Pyrex on the undercut silicon are then turned into ball shapes by thermal reflow, and separated from the wafer by further etching of the silicon support. Radial variation and surface roughness are measured to be less than ${\pm}3\;{\mu}m$ and ${\pm}1\;nm$, respectively, for ball diameter of about $500\;{\mu}m$. A surface defect on the ball that is due to the silicon support is shown to be healed by using a silicon-optical-bench. Optical power-relay of the ball lens showed the maximum efficiency of 65% between two single-mode fibers on the silicon-optical-bench.

키워드

참고문헌

  1. J. Gates, D. Muehlner, M. Cappuzzo, M. Fishteyn, L. Gomez, G. Henein, E. Laskowski, I. Ryazansky, J. Shmulovich, D. Syvertsen, and A. White, “Hybrid integrated silicon optical bench planar lightguide circuits,” in Proc. ElectronicComponents and Technology Conference (Seattle, WA, USA, May 1998), pp. 551-559.
  2. D. W. Sherrer, N. Brese, J. Fisher, C. Gaebe, N. A. Heiks, J. Getz, J. Rasnake, and E. S. Simon, “Wafer-level packaging technology for 10Gbps TOSAs,” in Proc. Electronic Components and Technology Conference (Lake Buena Vista,FL, USA, May 2005), pp. 1325-1332.
  3. L.-S. Huang, S.-S. Lee, E. Motamedi, M. C. Wu, and C.-J. Kim, “MEMS packaging for micro mirror switches,” in Proc. Electronic Components and Technology Conference (Seattle, WA, USA, May 1998), pp. 592-597.
  4. Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281-1284 (1988). https://doi.org/10.1364/AO.27.001281
  5. S.-K. Lee, M.-G. Kim, K.-W. Joo, S.-M. Shin, and J.-H. Lee, “A glass reflowed microlens array on a Si substrate with rectangular through-holes,” J. Opt. A: Pure Appl. Opt. 10, 1-7 (2008).
  6. M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, “Simple reflow technique for fabrication of a microlens array in solgel glass,” Opt. Lett. 28, 731-733 (2003). https://doi.org/10.1364/OL.28.000731
  7. P. Merz, H. J. Quenzerl, H. Bemt, B. Wagner, and M. Zoberbier, “A novel micromachining technology for structuring borosilicate glass substrates,” in Proc. Transducers 03, The 12th International Conference on Solid Stale Sensors, Actuators and Microsystems (Boston, MA, USA, Jun. 2003), pp. 258-261.
  8. J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Exp. 17, 6283-6292 (2009). https://doi.org/10.1364/OE.17.006283
  9. D.-H. Cha, Y. Hwang, J.-H. Kim, and H.-J. Kim, “Transcription characteristics of mold surface topography in the molding of aspherical glass lenses,” J. Opt. Soc. Korea 13, 213-217 (2009). https://doi.org/10.3807/JOSK.2009.13.2.213
  10. L. Hao, S. Bangren, W. Jijiang, G. Lijun, and L. Aimei, “Fabrication of gradient refractive index ball lenses using the method of combination of ion exchanging and sagging,” Opt. Comm. 276, 310-316 (2007). https://doi.org/10.1016/j.optcom.2007.04.057
  11. A. Yamagata, F. Ishizaki, and K. Sugizaki, “Globular glass manufacturing apparatus and method for manufacturing the globular glass,” U.S. Patent 0132752 A1 (2005).
  12. H. L. Althaus, W. Gramann, and K. Panzer, “Microsystems and wafer processes for volume production of highly reliable fiber optic components for telecom- and datacomapplication,” IEEE Trans. on Components, Packaging, andManufacturing Technology B21, 7-15 (1997).
  13. H. Yang, C.-K. Chao, C.-P. Lin, and S.-C. Shen, “Microball lens array modeling and fabrication using thermal reflow in two polymer layers,” J. Micromech. Microeng. 14, 277-282 (2003). https://doi.org/10.1088/0960-1317/14/2/016
  14. C.-T. Pan, C.-H. Chien, and C.-C. Hsieh, “Technique of microball lens formation for efficient optical coupling,” Appl. Opt. 43, 5939-5946 (2004). https://doi.org/10.1364/AO.43.005939
  15. F. Pigeon, B. Biasse, and M. Zussy, “Low-temperature Pyrex glass wafer direct bonding,” Electron. Lett. 31, 792-793 (1995). https://doi.org/10.1049/el:19950554
  16. G. Wallis and D. I. Pomerantz, “Field assisted glass-metal sealing,” J. Appl. Phys. 40, 3946-3949 (1969). https://doi.org/10.1063/1.1657121
  17. M. Alexe and U. Gosele, Wafer Bonding, Application and Technology (Springer Verlag, Berlin, Germany, 2004).
  18. M. Bua, T. Melvin, G. J. Ensell, J. S. Wilkinson, and A. G. R. Evans, “A new masking technology for deep glass etching and its microfluidic application,” Sens. Actuators A 115, 476-482 (2004). https://doi.org/10.1016/j.sna.2003.12.013

피인용 문헌

  1. Fabrication of Micro-Polymer Lenses With Spacers Using Low-Cost Wafer-Level Glass-Silicon Molds vol.3, pp.12, 2013, https://doi.org/10.1109/TCPMT.2013.2286162
  2. Monolithically integrated glass microlens scanner using a thermal reflow process vol.23, pp.6, 2013, https://doi.org/10.1088/0960-1317/23/6/065012