DOI QR코드

DOI QR Code

Perspective of Hybridization Technology for Next-Generation Solar Cells

차세대 태양전지 하이브리드 기술의 전망

  • Lee, Jae-Kwan (Research Center for Convergence Technology, Hoseo University) ;
  • Lee, Jae-Joon (Department of Applied Chemistry, Konkuk University)
  • 이재관 (호서대학교 융합기술연구소) ;
  • 이재준 (건국대학교 응용화학과)
  • Published : 2010.02.27

Abstract

We are presenting an overview of a R&D trend on dye-sensitized solar cells and organic polymer solar cells, which are classified into a next-generation solar cell, and the perspective on their hybridization technology. When considering the competition with inorganic material-base solar cells, especially, these next-generation solar cells need a new hybridization technology, even though it is still at the initial stage. The fusion and hybridization of them will be not only attractive in a new application, but also promising to expect significant progresses in the near future for successful R&D.

본 논문에서는 주요 차세대 태양전지로 분류되는 염료감응 태양전지와 유기(고분자)태양전지에 대한 연구 동향을 살펴보고 이들의 하이브리드 기술전망에 관해 살펴보았다. 특히 두 분야는 기존 무기물 소재의 태양전지와의 경쟁력을 제고하기 위한 측면에서도 상호 전략적인 기술융합을 통한 하이브리드 기술의 개발이 필요한 시점이다. 기술적으로나 시기적으로 아직 초기단계임에도 기술융합에 대한 새로운 응용 가능성에 많은 관심을 끌고 있을 뿐 아니라 성공적인 융합기술 개발의 파급효과도 매우 클 것으로 예상된다.

Keywords

References

  1. T. Markvart and L. Castaner, Solar Cell: materials, manufacture and operation, Elsevier (2005).
  2. M. Gratzel 'Dye-sensitized solar cell' J. Photochem. Photobiol. C: Photochem. Rev., 4, 145 (2003). https://doi.org/10.1016/S1389-5567(03)00026-1
  3. F. T. Kong, S. Y. Dai, and K. J. Wang, ‘Review of recent progress in dye-sensitized solar cells’ Adv. OptoElectro., 1 (2007).
  4. B. C. Thompson and J. M. J. Frechet, ‘Polymer-fullerene composite solar cell’ Angew. Chem. Int. Ed., 46. 2 (2007).
  5. S. Gunes, H. Neugebauer, and N. S. Sariciftci, ‘Conjugated polymer-based organic solar cells’ Chem. Rev., 107, 1324 (2007). https://doi.org/10.1021/cr050149z
  6. B. O’Regan and M. Gratzel, ‘A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 film’ Nature, 353, 737 (1991). https://doi.org/10.1038/353737a0
  7. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, ‘Photoinduced electron transfer from a conducting polymer to buckminsterfullerene’ Science, 258, 1474 (1992). https://doi.org/10.1126/science.258.5087.1474
  8. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, ‘Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunction’ Science, 270, 1789 (1995). https://doi.org/10.1126/science.270.5243.1789
  9. M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Gratzel, ‘Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers’ J. Am. Chem. Soc., 127, 16835 (2005). https://doi.org/10.1021/ja052467l
  10. S. Ito, S.M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Pechy, M. Takata, H. Miura, S. Uchida, and M. Gratzel, ‘Highefficiency organic dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness’ Adv. Mater., 18, 1202 (2006). https://doi.org/10.1002/adma.200502540
  11. P. Wang, S. M. Zakeeruddin, J.-E. Moser, R. Humphry-Baker, and M. Gratzel, ‘A solvent-free, SeCN-/$(SeCN)_3$-Based ionic liquid electrolyte for high-efficiency dyesensitized nanocrystalline solar cells’ J. Am. Chem. Soc., 126, 7164 (2004). https://doi.org/10.1021/ja048472r
  12. N. Mohmeyer, D. Kuang, P. Wang, H.-W. Schmidt, S. M. Zakeeruddin, and M. Gratzel, ‘An efficient organogelator for ionic liquids to prepare stable quasi-solid-state dyesensitized solar cells’ J. Mater. Chem., 16, 2978 (2006). https://doi.org/10.1039/b604021g
  13. J. Wu, S. Hao, Z. Lan, J. Lin, M. Huang, Y. Huang, P. Li, S. Yin, and T. Sato, ‘An all-solid-state dye-sensitized solar cell-based poly(N-alkyl-4-vinyl-pyridine iodide) electrolyte with efficiency of 5.64%’ J. Am. Chem. Soc., 130, 11568 (2008). https://doi.org/10.1021/ja802158q
  14. H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, ‘Polymer solar cells with enhanced open-circuit voltage and efficiency’ Nat. Photonics, 3, 649 (2009). https://doi.org/10.1038/nphoton.2009.192
  15. B. Walker, A. B. Tamayo, X. D. Dang, P. Zalar, J. H. Seo, A. Garcia, M. Tantiwiwat, and T. Q. Nguyen, ‘Nanoscale phase separation and high photovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solar cells’ Adv. Funct. Mater., 19, 3063 (2009). https://doi.org/10.1002/adfm.200900832
  16. J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, ‘Mixed donor-acceptor molecular heterojunctions for photovoltaic applications. II. Device performance’ J. Appl. Phys., 98, 9 (2005).
  17. G. R. A. Kumara, S. Kaneko, A. Konno, M. Okuya, K. Murakami, B. Onwona-agyeman, and K. Tennakone, ‘Large area dye-sensitized solar cells: material aspects of fabrication’ Prog. Photovolt: Res. Appl., 14, 643 (2006). https://doi.org/10.1002/pip.695
  18. G. Rothenberger, D. Fitzmaurice, and M. Gratzel, ‘Spectroscopy of conduction band electrons in transparent metal oxide semiconductor films: optical determination of the flat band potential of colloidal titanium dioxide films’ J. Phys. Chem., 96, 5983 (1992). https://doi.org/10.1021/j100193a062
  19. P. Wang, S. M. Zakeeruddin, R. Humphry-Baker, J. E. Moser, and M. Gratzel, ‘Molecular-scale interface engineering of $TiO_2$ nanocrystals: improving the efficiency and stability of dye-sensitized solar cells’ Adv. Mater., 15, 2101 (2003). https://doi.org/10.1002/adma.200306084
  20. C. Klein, M. K. Nazeeruddin, P. Liska, D. Di Censo, N. Hirata, E. Palomarses, J. R. Durrant and M. Gratzel, ‘Engineering of a novel ruthenium sensitizer and its application in dye-sensitized solar cells for conversion of sunlight into electricity’ Inorg. Chem., 44, 178 (2005). https://doi.org/10.1021/ic048810p
  21. P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, and M. Gratzel, ‘A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells’ J. Am. Chem. Soc., 127, 808 (2005). https://doi.org/10.1021/ja0436190
  22. P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, ‘A stable quasisolid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte’ Nature Mater., 2, 402 (2003). https://doi.org/10.1038/nmat904
  23. P. Wang, S. M. Zakeeruddin, J. E. Moser, R. Humphry-Baker, P. Comte, V. Aranyos, A. Hagfeldt, MK Nazeeruddin, and M. Gratzel, ‘Stable new sensitizer with improved light harvesting for nanocrystalline dyesensitized solar cells’ Adv. Mater., 16, 1806 (2004). https://doi.org/10.1002/adma.200400039
  24. D. Kuang, S. Ito, B. Wenger, C. Klein, J. Moser, R. Humphry-Baker, S. M. Zakeeruddin, and M. Gratzel, ‘High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells’ J. Am. Chem. Soc., 128, 4146 (2006). https://doi.org/10.1021/ja058540p
  25. K. -J. Jiang, N. Masaki, J.-B. Xia, S. Noda, and S. Yanagida, ‘A novel ruthenium sensitizer with a hydrophobic 2-thiophen-2-yl-vinyl- conjugated bipyridyl ligand for effective dye sensitized TiO2 solar cells’ Chem. Commun., 23, 2460, (2006).
  26. P. Wang, C. Klein, J.-E. Moser, R. Humphry-Bake, N. E. Cevey-Ha, R. charvet, P, Comte, S. M. Zakeeruddin, and M. Gratzel, ‘Amphiphilic ruthenium sensitizer with 4,4’-diphosphonic acid-2,2’-bipyridine as anchoring ligand for nanocrystalline dye sensitized solar cells’ J. Phys. Chem. B., 108, 17553 (2004). https://doi.org/10.1021/jp046932x
  27. P. P'echy, F. P. Rotzinger, M. K. Nazeeruddin, O. Kohle, SM Zakeeruddin, R. Humphry-baker and M. Gratzel, ‘Preparation of phosphonated polypyridyl ligands to anchor transition-metal complexes on oxide surfaces: application for the conversion of light to electricity with nanocrystalline $TiO_2$ films’ Chem. Commun., 65 (1995).
  28. K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, ‘A coumarin-derivative dye sensitized nanocrystalline $TiO_2$ solar cell having a high solar-energy conversion efficiency up to 5.6%’ Chem. Commun., 6, 569 (2001). https://doi.org/10.1039/b010058g
  29. K. Hara, Z.-S. Wang, A. Furube, R. Katoh, H. Sugihara, Y. Dan-Oh, C. Kasada, A. Shinpo, and S. Suga, ‘Oligothiophene- containing coumarin dyes for efficient dye-sensitized solar cells’ J. Phys. Chem. B., 109, 15476 (2005). https://doi.org/10.1021/jp0518557
  30. S. Kim, J. K. Lee, S. O. Kang, J. Ko, J.-H. Yum, S. Fantacci, F. De Angelis, D. Di Censo, Md. K. Nazeeruddin, and M. Gratzel, ‘Molecular Engineering of Organic Sensitizers for Solar Cell Applications’ J. Am. Chem. Soc., 128, 16701 (2006). https://doi.org/10.1021/ja066376f
  31. K. Hara, M. Kurashige, Y. Dan-Oh, . Kasada, A. Shinpo, S. Suga, K. Sayama, and H. Arakawa, ‘Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells’ New J. Chem., 27, 783 (2003). https://doi.org/10.1039/b300694h
  32. N. Koumura, Z. S. Wang, S. Mori, M. Miyashita, E. Suzuki, and K. Hara, ‘Alkyl-functionalized organic dyes for efficient molecular photovoltaics’ J. Am. Chem. Soc., 128, 14256 (2006). https://doi.org/10.1021/ja0645640
  33. K. Hara, M. Kurashige, S. Ito, A. Shinpo, S. Suga, K. Sayama, and H. Arakawa, ‘Novel polyene dyes for highly efficieny dye-sensitized solar cells’ Chem. Commun., 2, 252, (2003).
  34. S.-L. Li, K.-J. Jiang, K.-F. Shao, and L.-M. Yang, ‘Novel organic dyes for efficient dye-sensitized solar cells’ Chem. Commun., 26, 2792 (2006).
  35. T. Horiuchi, H. Miura, K. Sumioka, and S. Uchida, ‘High efficiency of dye-sensitized solar cells based on metal-free indoline dyes’ J. Am. Chem. Soc., 126, 12218, (2004). https://doi.org/10.1021/ja0488277
  36. H. Choi, C. Baik, S. O. Kang, J. Ko, M. S. Kang, M. K. Nazeeruddin, and M. Gratzel ‘Highly efficient and thermally stable organic sensitizers for solvent-free dye-sensitized solar cells’ Angew. Chem. Int. Ed., 47. 327 (2008). https://doi.org/10.1002/anie.200703852
  37. W. Zhao, B. W. Zhang, Y. Cao, X. Xiao, and R. Yang, ‘Photoelectric conversion performance of nanocrystalline $TiO_2$ film electrodes modified with squarylium cyanine functional materials’ J. Funct. Mater., 30, 304 (1999).
  38. C. Brabeck, V. Dyakonov, and U. Scherf., Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technology, Wiley. (2008).
  39. H. Hoppe, T. Glatzel, M. Niggemann, W. Schwinger, F. Schaeffler, A. Hinsch, M. Ch. Lux-Steiner, and N.S. Sariciftci, ‘Efficiency limiting morphological factors of MDMO-PPV:PCBM plastic solar cells devices’ Thin Solid Films, 511, 587 (2006). https://doi.org/10.1016/j.tsf.2005.12.071
  40. X. Wu, T. A. Chen, and R. D. Rieke, ‘A study of small band gap polymers: head-to-tail regioregular poly[3-(alkylthio)-thiophenes] prepared by regioselective synthesis using active zinc’ Macromolecules, 29, 7671(1996). https://doi.org/10.1021/ma960946m
  41. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, ‘Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiol’ Nature Mater., 6, 497 (2007). https://doi.org/10.1038/nmat1928
  42. S. K. Lee, N. S. Cho, S. Cho, S. J. Moon, J. K. Lee, and G. C. Bazan, ‘Synthesis and characterization of low-bandgap cyclopentadithiophene-biselenophene copolymer and its use in field-effect transistor and polymer solar cells’ J. Poly. Sci: Part A: Poly. Chem., 47, 6873 (2009). https://doi.org/10.1002/pola.23726
  43. S. H. Park, A. Roy, S. Beaupré, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, ‘Bulk heterojunction solar cells with internal quantum efficiency approaching 100%’ Nat. Photonics, 3, 297 (2009). https://doi.org/10.1038/nphoton.2009.69
  44. C. Yang, J. Y. Kim, S. Cho, J. K. Lee, A. J. Heeger, and F. Wudl, ‘Functionalized methanofullerenes used as n-type materials in bulk-heterojunction polymer solar cells and in field-effect transistors’ J. Am. Chem. Soc., 130, 6444 (2008). https://doi.org/10.1021/ja710621j
  45. J. K. Lee, Y. M. Wang, S. Cho, F. Wudl, and A. J. Heeger, ‘New approach for forming bulk-heterojunction solar cells comprising a $\pi$-conjugated polymer and $C_{60}$’ Org. Electro., 10, 1223 (2009). https://doi.org/10.1016/j.orgel.2009.06.013
  46. Y. Tachibana, J. E. Moser, M. Gratzel, D. R. Klug, and J.R. Durrant, ‘Sub picosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films’ J. Phys. Chem., 100, 20056 (1996). https://doi.org/10.1021/jp962227f
  47. W. Geens, S. E. Shaheen, B. Wessling, C. J. Brabec, J. Poortmans, and N. S. Sariciftci, ‘Dependence of field-effect hole mobility of PPV-based polymer films on the spin casting solvent’ Org. Electro., 3, 105 (2002). https://doi.org/10.1016/S1566-1199(02)00039-3
  48. H. X. Wang, B. F. Xue, Y. S. Hu, Z. X. Wang, Q. B. Meng, X. J. Huang, and L. Q. Chen, ‘Characterization of interactions among 3-hydroxypropionitrile/LiI electrolytes’  Electrochem. Solid-State Lett., 7, 302 (2004).
  49. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, and C. A. Grimes, ‘A review on highly ordered, vertically oriented $TiO_2$ nanotube arrays: fabrication, material propertie, and solar energy applications’ Sol. Energy Mater. Sol. Cells, 90, 2011 (2006). https://doi.org/10.1016/j.solmat.2006.04.007
  50. E. Kymakis, I. Alexandrou, and G. A. J. Amaratunga, ‘High open-circuit voltage photovoltaic devices from carbon nanotube-polymer composites’ J. Appl. Phys., 93, 1764 (2003). https://doi.org/10.1063/1.1535231
  51. G. P. Smestada, S. Spiekermann, J. Kowalik, C D. Grant, A. M. Schwartzberg, J. Zhang, L. M. Tolbert, and E. Moons, ‘A technique to compare polythiophene solid-state dye sensitized $TiO_2$ solar cells to liquid junction devices’ Sol. Energy Mater. Sol. Cells, 76, 85 (2003). https://doi.org/10.1016/S0927-0248(02)00252-0
  52. E. Lancelle-Beltran, P. Prene, C. Boscher, P. Belleville, P. Buvat, and C. Sanchez, ‘All-solid-state dye-sensitized nanoporous $TiO_2$ hybrid solar cells with high energy-conversion efficiency’ Adv. Mater., 18, 2579 (2008).
  53. W. U. Huyn, J. J. Dittmer, and A. P. Alivisatos, ‘Hybrid nanorod-polymer solar cells’ Science, 295, 2425 (2002). https://doi.org/10.1126/science.1069156

Cited by

  1. Preparation of Porous TiO2Thin Films by Poly(vinyl chloride)-graft-poly(N-vinyl pyrrolidone) and Their Applications to Dye-sensitized Solar Cells vol.14, pp.2, 2011, https://doi.org/10.5229/JKES.2011.14.2.083