A Study of Adhesive Mechanism of Gecko Adhesion System using Adhesive Beam Contact Model

보 접착 모델을 이용한 게코 접착 시스템의 접착 메커니즘에 대한 연구

  • 김원배 (서울대학교 기계항공공학부) ;
  • 조맹효 (서울대학교 기계항공공학부)
  • Received : 2010.07.09
  • Accepted : 2010.07.31
  • Published : 2010.08.31

Abstract

Gecko adhesion system consists of beam-shaped seta and spatula which has the role of adhesive pad. In this paper, adhesion mechanism of gecko adhesion system is performed by using adhesive beam contact model. this model has a feature of non-uniform stress profile on the contact surface and adhesion/detachment mechanism is determined by the tensile stress of the contact region. a spatula tip pad has the role of reduction of maximum tensile stress and adhesive force is increased due to this effect. As for a reverse loading case, maximum compressive stress drops by the spatula effect and this cause unsymmetric loading conditions between adhesion and detachment forces. In this study, finite element method is used for the analysis of adhesive beam contact model and the results for spatula effect are presented.

게코 접착 시스템은 보(beam)의 형상을 가지는 seta와 접착패드 역할을 하는 spatula로 구성된다. 본 논문에서는 보 접착 모델(ahhesive beam contact model)을 사용하여 게코(gecko) 접착 시스템의 접착 메커니즘의 해석을 수행한다. 보 접착 모델은 접촉면에서 불균일한 응력 분포를 가지는 특징이 있으며, 접촉면에서의 최대 인장 응력(tensile stress)에 의하여 접착/분리 메커니즘이 결정된다. 접착패드 역할을 하는 spatula는 최대 인장응력을 감소시키는 역할을 하며, 이로 인해 접착력이 증가한다. 역방향 하중에 대해서는 spatula에 의하여 최대 압축 응력(compressive stress)이 감소하며, 이러한 현상에 의하여 접착력과 분리력의 비대칭성이 발생한다. 본 연구에서는 보 접착 모델의 해석을 위해 유한요소법(Finite Element Method)을 사용되며, spatula effect를 위한 해석 결과가 제시된다.

Keywords

References

  1. Arzt, E., Gorb., S., Spolenak, R. (2003) From Micro to Nano Contacts in Biological Attachment Devices, PNAS, 100(19), pp.10603-10606. https://doi.org/10.1073/pnas.1534701100
  2. Rizzo, N.W., Gardner,, K.H., Walls, D.J., Keiper- Hrynko, N.M., Ganzke, T.S., Hallahan, D.L. (2006) Characterization of the Structure and Composition of Gecko Adhesive Setae, J. R. Soc. Interf., 3, pp.441-451. https://doi.org/10.1098/rsif.2005.0097
  3. Autumn, K., Majidi, C., Groff, R.E., Dittmore, A., Fearing, R. (2006) Effective Elastic Modulus of Isolated Gecko Setal Arrays, J. Exp. Biol., 209, pp.3558-3568. https://doi.org/10.1242/jeb.02469
  4. Autumn, K., Liang, Y.A., Hsieh, S.T., Zesh, W., Chan, W.P., Kenny, T.W., Fearing, R., Israelachvili, J., Full, R.J. (2000) Adhesive Force of a Single Gecko Foot-Hair, Nature, 405, pp.681-685. https://doi.org/10.1038/35015073
  5. Autumn, K. Sitti, M., Liang, Y.A., Peattie, A.M., Hansen, W.R., Sponberg, S., Kenny, T.W., Fearing, R., Israelachivili, J.N., Full, R.J. (2002) Evidence for Van Der Waals Adhesion in Gecko Setae, PNAS, 99(19), pp.12252-12256. https://doi.org/10.1073/pnas.192252799
  6. Huber, G., Mantz, H., Spolenak, R., Mecke, K., Jacobs, K., Gorb, S.N., Arzt, E. (2005) Evidence for Capillarity Contributions to Gecko Adhesion from Single Spatula Nanomechanical Measurements, PNAS, 102(45), pp.16293-16296. https://doi.org/10.1073/pnas.0506328102
  7. Ge, L., Sethi, S., Ci, L., Ajayan, P.M., Dhinojwala, A. (2007) Carbon Nanotube-Based Synthetic Gecko Tapes, PNAS, 104(26), pp.10792-10795. https://doi.org/10.1073/pnas.0703505104
  8. Qu, L., Dai, L., Stone, M., Xia, Z., Wang, Z.L. (2008) Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off, Science, 322, pp.238-242. https://doi.org/10.1126/science.1159503
  9. Jeong, H.E., Lee, J.K., Kim, H.N., Moon, S.H., Suh, G.Y. (2009) A Nontransferring Dry Adhesive with Hierarchical Polymer Nanohairs, PNAS, 106(14), pp.5639-544. https://doi.org/10.1073/pnas.0900323106
  10. Jeong, H.E., Suh, K.Y. (2009) Nanohairs and Noaotubes: Efficient Structural Elements for Gecko- Inspired Artificial Dry Adhesives, Nano Today, 4, pp.335-346. https://doi.org/10.1016/j.nantod.2009.06.004
  11. Johnson, K.L., Kendall, K., Roberts, A.D. (1971) Surface Energy and the Contact of Elastic Solids, Proc. R. Soc. Lond. A 324, pp.301-313. https://doi.org/10.1098/rspa.1971.0141
  12. Kendall, K. (1975) Thin-Film Peeling-The Elastic Term, J. Phys. D: Appl. Phys., 8, pp.1449-1452. https://doi.org/10.1088/0022-3727/8/13/005
  13. Israelachivili, J.N. (1992) Intermodular and Surface Forces, Academic Press, New York, p.450.