Abstract
For cryptographic systems, nonlinearity is crucial since most linear systems are easily decipherable. C.Bracken, Z.Zhaetc., propose the APN(Almost Perfect Nonlinear) functions with the properties similar to those of the bent functions with perfect nonlinearity. We design two kinds of new code sequence generating algorithms using the above APN functions. And we find that the out of phase ${\tau}\;{\neq}\;0$, autocorrelation functions, $R_{ii}(\tau)$ and the crosscorrelation functions, $R_{ik}(\tau)$ of the binary code sequences generated by two new algorithms over GF(2), have three values of {-1, $-1-2^{n/2}$, $-1+2^{n/2}$}. We also find that the out of phase ${\tau}\;{\neq}\;0$, autocorrelation functions, $R_{p,ii}(\tau)$ and the crosscorrelation functions, $R_{p,ik}(\tau)$ of the nonbinary code sequences generated by the modified algorithms over GF(p), $p\;{\geq}\;3$, have also three values of {$-1+p^{n-1}$, $-1-p^{(n-1)/2}+p^{n-1}$, $-1+p^{(n-1)/2}p^{n-1}$}. We show that these code sequences have the characteristics of the correlation functions similar to those of Gold code sequences.
암호화 시스템에서 대부분의 선형시스템은 쉽게 해석될 수 있기 때문에 비선형성은 매우 중요하다. 비선형 함수인 bent함수와 유사한 특성을 갖고 C.Bracken, Z.Zha 등에 의하여 제안된 APN(Almost Perfect Nonlinear) 함수를 이용하여 두 종류의 새로운 부호계열 발생 알고리즘을 제안하였다. 이를 이용하여 GF(2)상에서 발생된 부호계열의 자기상관함수 $R_{ii}(\tau)$, ${\tau}\;{\neq}\;0$와 상호상관함수 $R_{ik}(\tau)$의 값은 {-1, $-1-2^{n/2}$, $-1+2^{n/2}$}을 가진다. 이 개념을 확장한 GF(p), $p\;{\geq}\;3$상에서 발생된 비 이원부호계열의 자기상관함수 $R_{p,ii}(\tau}$, ${\tau}\;{\neq}\;0$와 상호상관함수 $R_{p,ik}(\tau)$의 값은 {$-1+p^{n-1}$, $-1-p^{(n-1)/2}+p^{n-1}$, $-1+p^{(n-1)/2}+p^{n-1}$} 로 역시 3종류 값을 가짐을 보였다. 이 분석결과로부터 발생된 부호계열의 상관함수가 Gold 부호계열과 유사한 특성을 가짐을 확인하였다.