DOI QR코드

DOI QR Code

Finite element analysis of elastic property of concrete composites with ITZ

  • Received : 2008.09.23
  • Accepted : 2010.05.24
  • Published : 2010.12.25

Abstract

For better estimation of elastic property of concrete composites, the effect of Interfacial Transition Zone (ITZ) has been found to be significant. Numerical concrete composites models have been introduced using Finite Element Method (FEM), where ITZ is modeled as a thin shell surrounding aggregate. Therefore, difficulties arise from the mesh generation. In this study, a numerical concrete composites model in 3D based on FEM and random unit cell method is proposed to calculate elastic modulus of concrete composites with ITZ. The validity of the model has been verified by comparing the calculated elastic modulus with those obtained from other analytical and numerical models.

Keywords

References

  1. Anson, M. and Newman, K. (1966), "The effect of mix proportions and method of testing on Poissons ratio for mortars and concretes", Mag. Concrete Res., 18, 115-130. https://doi.org/10.1680/macr.1966.18.56.115
  2. Abdelmoumen, S., Bellenger, E. and Queneudec-t'Kint, M. (2007), "Finite element analysis of elastic properties of rubberized concrete composites by a random unit cell method", Proceedings of the Eleventh International Conference on Civil, Structural and Environmental Engineering Computing, Civil-Comp Press, United Kingdom.
  3. Bohm, H.J., Eckschlager, A. and Han, W. (2002), "Multi-inclusion unit cell models for metal matrix composites with randomly oriented discontinuous reinforcements", Comp. Mater. Sci., 25(1-2), 42-53. https://doi.org/10.1016/S0927-0256(02)00248-3
  4. Christensen, R.M. and Lo, K.H. (1979), "Solutions for effective shear properties of three phase sphere and cylinder models", J. Mech. Phys. Solids., 27, 315-330. https://doi.org/10.1016/0022-5096(79)90032-2
  5. Cohen, M.D., Goldman, A. and Chen, W.F. (1994), "The role of silica fume in mortar: transition zone versus bulk paste modification", Cement Concrete Res., 24, 95-98. https://doi.org/10.1016/0008-8846(94)90089-2
  6. Counto, U.J. (1964), "The effect of the elastic modulus of the aggregate on the elastic modulus, creep and creep recovery of concrete", Mag. Concrete Res., 16, 129-138. https://doi.org/10.1680/macr.1964.16.48.129
  7. Garboczi, E.J. (1997), "Stress, displacement, and expansive cracking around a single spherical aggregate under different expansive conditions", Cement Concrete Res., 27, 495-500. https://doi.org/10.1016/S0008-8846(97)00029-X
  8. Gusev, A.A. (1997), "Representative volume element size for elastic composites: a numerical study", J. Mech. Phys. Solids., 45, 1449-1459. https://doi.org/10.1016/S0022-5096(97)00016-1
  9. Hashin, Z. and Shtrikman, J. (1963), "A variational approach to the theory of the elastic behaviour of multiphase materials", J. Mech. Phys. Solids., 11, 127-140. https://doi.org/10.1016/0022-5096(63)90060-7
  10. Hashin, H. and Monteiro, P.J.M. (2002), "An inverse method to determine the elastic properties of the interphase between the aggregate and the cement paste", Cement Concrete Res., 32, 1291-1300. https://doi.org/10.1016/S0008-8846(02)00792-5
  11. Hirsch, T.J. (1962), "Modulus of elasticity of concrete affected by elastic moduli of cement paste matrix and aggregate", ACI J., 59, 427-451.
  12. Kanit, T., Forest, S., Galliet, I., Mounoury, V. and Jeulin, D. (2003), "Determination of the size of the representative volume element for random composites: statistical and numerical approach", Int. J. Solids Struct., 40, 3647-3679. https://doi.org/10.1016/S0020-7683(03)00143-4
  13. Kari, S., Berger, H., Rodriguez-Ramos, R. and Gabbert, U. (2007), "Computational evaluation of effective material properties of composites reinforced by randomly distributed spherical particles", Compos. Struct, 77, 223-231. https://doi.org/10.1016/j.compstruct.2005.07.003
  14. Lee, K.M. and Park, J.H. (2008), "A numerical model for elastic modulus of concrete considering interfacial transition zone", Cement Concrete Res., 38, 396-402. https://doi.org/10.1016/j.cemconres.2007.09.019
  15. Llorca, J., Elices, E. and Termonia, Y. (2000), "Elastic properties of sphere-reinforced composites with mesophase", Acta. Mater., 48, 4589-4597. https://doi.org/10.1016/S1359-6454(00)00245-7
  16. Lutz, M.P., Monteiro, P.J.M. and Zimmerman, R.W. (1997), "Inhomogeneous interfacial transition zone model for the bulk modulus of mortar", Cement Concrete Res., 27, 1113-1122. https://doi.org/10.1016/S0008-8846(97)00086-0
  17. Lydon, F.D. and Balendran, R.V. (1986), "Some observations on elastic properties of plain concrete", Cement Concrete Res., 16, 314-324. https://doi.org/10.1016/0008-8846(86)90106-7
  18. Marus, P.R. (2004), "Estimation of effective elastic properties and interface stress concentration in particulate composites by unit cell methods", Acta. Mater., 52, 1263-1270. https://doi.org/10.1016/j.actamat.2003.11.010
  19. Mehta, P.K. and Monteiro, P.J.M. (1993), Concrete: structure, properties, and methods, 2nd ed., Prentice-Hall, Englewood Cliffs, N.J.
  20. Mindess, S. (1989), Interface in Concrete, J.P. Skalny (Ed.), Materials Science of Concrete, American Ceramic Society, Westerville, Ohio, 163-180.
  21. Nadeau, J.C. (2003), "A multiscale model for effective moduli of concrete incorporating ITZ waterncement ratio gradients, aggregate size distributions and entrapped voids", Cement Concrete Res., 33, 103-113. https://doi.org/10.1016/S0008-8846(02)00931-6
  22. Ramesh, G., Sotelino, E.D. and Chen, W.F. (1996), "Effect of transition zone on elastic moduli of concrete materials", Cement Concrete Res., 26, 611-622. https://doi.org/10.1016/0008-8846(96)00016-6
  23. Scrivener, K.L. and Nemati, K.M. (1996), "The percolation of pore space in the cement paste/aggregate interfacial zone of concrete", Cement Concrete Res., 26, 35-40. https://doi.org/10.1016/0008-8846(95)00185-9
  24. Segurado, J. and Llorca, J.A. (2003), "Numerical approximation to the elastic properties of sphere-reinforced composites", J. Mech. Phys. Solids., 50, 2107-2121.
  25. Simeonov, P. and Ahmad, S. (1995), "Effect of transition zone on the elastic behavior of cement-based composites", Cement Concrete Res., 25, 165-176. https://doi.org/10.1016/0008-8846(94)00124-H
  26. Sun, C., Saffari, P., Ranade, R., Sadeghipour, K. and Baran, G. (2007), "Finite element analysis of elastic property bounds of a composite with randomly distributed particles", Compos. Part A, 38, 80-86. https://doi.org/10.1016/j.compositesa.2006.01.010
  27. Rintoul, M.D. and Torquato, S. (1997), "Reconstruction of the structure of dispersions", J. Colloid. Interf. Sci., 186, 467-476. https://doi.org/10.1006/jcis.1996.4675
  28. Yang, C.C. and Huang, R. (1996), "Double inclusion model for approximate elastic moduli of concrete material", Cement Concrete Res., 26, 83-91. https://doi.org/10.1016/0008-8846(95)00196-4
  29. Zohdi, T.I. and Wriggers, P. (2001), "Computational micro-macro material testing", Arch. Comput. Method. E., 8, 131-228. https://doi.org/10.1007/BF02897871

Cited by

  1. Simulation Study on the Stress Distribution in Modeled Recycled Aggregate Concrete under Uniaxial Compression vol.25, pp.4, 2013, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000598
  2. Numerical Discrete-Element Method Investigation on Failure Process of Recycled Aggregate Concrete vol.31, pp.1, 2019, https://doi.org/10.1061/(ASCE)MT.1943-5533.0002562
  3. Critical Review of Recycled Aggregate Concrete Properties, Improvements, and Numerical Models vol.32, pp.11, 2010, https://doi.org/10.1061/(asce)mt.1943-5533.0003394
  4. A New Formulation to Estimate the Elastic Modulus of Recycled Concrete Based on Regression and ANN vol.13, pp.15, 2010, https://doi.org/10.3390/su13158561