• Title/Summary/Keyword: random unit cell

Search Result 26, Processing Time 0.028 seconds

Study of the Non-polar Optical Phonon Scattering According to the Size of Unit Cell in an Alloy Semiconductor (혼합물반도체에서 단위격자 크기 설정에 따른 비극성 Optical 포논산란에 대한 연구)

  • Chun, Dae-Myung;Kim, Tae-Hyun;Chun, Sang-Kook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.784-789
    • /
    • 2011
  • A linear spring model, where the interactions among atoms are assumed to be isotropic and elastic, is employed for the study of non-polar optical phonon scattering in the valence band of alloy semiconductors. The force equations of n atoms are used in the spring model for the consideration of the random distribution of constituent atoms in an alloy semiconductor. When the number of atoms in a unit cell is assumed to be two based on the experimental result, the optical deformation potent is valid for compound semiconductors as well as alloy semiconductors.

Electro-Thermal Characteristics of Hole-type Phase Change Memory (Hole 구조 상변화 메모리의 전기 및 열 특성)

  • Choi, Hong-Kyw;Jang, Nak-Won;Kim, Hong-Seung;Lee, Seong-Hwan;Yi, Dong-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.131-137
    • /
    • 2009
  • In this paper, we have manufactured hole type PRAM unit cell using phase change material $Ge_2Sb_2Te_5$. The phase change material $Ge_2Sb_2Te_5$ was deposited on hole of 500 nm size using sputtering method. Reset current of PRAM unit cell was confirmed by measuring R-V characteristic curve. Reset current of manufactured hole type PRAM unit cell is 15 mA, 100 ns. And electro and thermal characteristics of hole type PRAM unit cell were analyzed by 3-D finite element analysis. From simulation temperature of PRAM unit cell was $705^{\circ}C$.

Study on The Non-polar Optical Phonon Scattering According to The Mixture of Atoms in a $A_{1-x}B_{x}$ Alloy semiconductor ($A_{1-x}B_{x}$ 혼합물반도체에서 원자들의 혼합형태에 따른 비극성 Optical 포논산란에 대한 연구)

  • 박일수;전상국
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.8
    • /
    • pp.611-617
    • /
    • 2001
  • The non-polar optical phonon scattering in the valence band depends on the masses, ratios, and types of mixtures of constituent atoms. Therefore, the random distribution of atoms in alloy semiconductors should be considered in the analysis of scattering mechanisms. For this purpose, the force equations of n atoms in a unit cell are expressed in a n x n matrix form to obtain the angular frequencies due to the acoustic and non-polar optical phonons. And, n is then assumed to be infinity. When this work is compared with other results published elsewhere, it is concluded that the independence of atomic displacement or amplitude of oscillation as ell as the infinite number of atoms in a unit cell must be taken into account for the random distribution of atoms in alloy semiconductors.

  • PDF

Finite element analysis of elastic property of concrete composites with ITZ

  • Abdelmoumen, Said;Bellenger, Emmanuel;Lynge, Brandon;Queneudec-t'Kint, Michele
    • Computers and Concrete
    • /
    • v.7 no.6
    • /
    • pp.497-510
    • /
    • 2010
  • For better estimation of elastic property of concrete composites, the effect of Interfacial Transition Zone (ITZ) has been found to be significant. Numerical concrete composites models have been introduced using Finite Element Method (FEM), where ITZ is modeled as a thin shell surrounding aggregate. Therefore, difficulties arise from the mesh generation. In this study, a numerical concrete composites model in 3D based on FEM and random unit cell method is proposed to calculate elastic modulus of concrete composites with ITZ. The validity of the model has been verified by comparing the calculated elastic modulus with those obtained from other analytical and numerical models.

Statistical treatment of the effective modulus of woven composites (평직복합재료 등가물성치의 통계학적 분포 특성)

  • 우경식;서영욱
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.59-62
    • /
    • 2000
  • In this study, the distribution of the effective modulus was investigated statistically Plain weave structures were modeled with random stacking phase shift angles and the effective modulus was calculated by the unit cell analysis. The analysis results indicated that the effect of random phase shift angles was significant on the modulus distribution. As the number of layers increased, the coefficient of variation decreased and higher degree of homogeneity was attained.

  • PDF

FORTRAN Program "PHYLS" for the Geometrical Prediction of the Structures of 1M and $2M_1$ 2:1 Phyllosilicates Having Space Groups C2/m, C2, and C2/c (공간군 C2/m, C2, 및 C2/c를 갖는 1M 및 $2M_1$ 2:1 층상 규산염 광물 구조의 기하학적 예측을 위한 포트란 프로그램 "PHYLS")

  • ;M. Slaughter
    • Journal of the Mineralogical Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.45-67
    • /
    • 1998
  • FORTRAN program PHYLS was developed to model the structures of 2:1 1M and 2M1 phyllosilicates on the basis of geometrical analyses. Input to PHYLS requires the chemical composition and d(001) spacing of the mineral. The output from PHYLS consists of the coordinates of the crystallographically independent sites in the unit cell, and such structural parameters as the cell dimensions, interaxial angle, cell volume, interatomic distances, and deformation angles of the polyhedra. PHYLS can generate these structural details according to the user's choice of space group and cation configuration. User can choose one of such space groups as C2/m, C2,and C2/c and such cation configurations as random and ordered tetrachedral/octahedral cation configurations. PHYLS simulated the structures of dioctahedral and trioctahedral phyllosilicates having random tetrahedral cation configuration fairly close to the reported experimentally determined structures. In contrast, the simulated structures for ordered tetrahedral cation configurations showed greater deviation from the experimentally determined structures than those for random configurations. However, if the cations were partially ordered and the sizes of the tetrahedra became similar, the simulated PHYLS may be helpful in various investigations on the relationships between structures and physicochemical properties of the phyllosilicates.

  • PDF

Estimation of Visual Stimulus Intensity From Retinal Ganglion Cell Spike Trains Using Optimal Linear Filter (최적선형필터를 이용한 망막신경절세포 Spike Train으로부터의 시각자극 세기 변화 추정)

  • Ryu, Sang-Baek;Kim, Doo-Hee;Ye, Jang-Hee;Kim, Kyung-Hwan;Goo, Yong-Sook
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.212-217
    • /
    • 2007
  • As a preliminary study for the development of electrical stimulation strategy of artificial retina, we set up a method fur the reconstruction of input intensity variation from retinal ganglion cell(RGC) responses. In order to estimate light intensity variation, we used an optimal linear filter trained from given stimulus intensity variation and multiple single unit spike trains from RGCs. By applying ON/OFF stimulation(ON duration: 2 sec, OFF duration: 5 sec) repetitively, we identified three functional types of ganglion cells according to when they respond to the ON/OFF stimulus actively: ON cell, OFF cell, and ON-OFF cell. Experiments were also performed using a Gaussian random stimulus and a binary random stimulus. The input intensity was updated once every 90 msec(i. e. 11 Hz) to present the stimulus. The result of reconstructing 11 Hz Gaussian and binary random stimulus was not satisfactory and showed low correlation between the original and reconstructed stimulus. In the case of ON/OFF stimulus in which temporal variation is slow, successful reconstruction was achieved and the correlation coefficient was as high as 0.8.

A $3{\mu}m$ Standard Cell Library Implemented in Single Poly Double Metal CMOS Technology ($3{\mu}m$ 설계 칫수의 이중금속 CMOS 기술을 이용한 표준셀 라이브러리)

  • Park, Jon Hoon;Park, Chun Seon;Kim, Bong Yul;Lee, Moon Key
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.2
    • /
    • pp.254-259
    • /
    • 1987
  • This paper describes the CMOS standard cell library implemented in double metal single poly gate process with 3\ulcornerm design rule, and its results of testing. This standard cell library contains total 33 cells of random logic gates, flip-flop gates and input/output buffers. All of cell was made to have the equal height of 98\ulcornerm, and width in multiple constant grid of 9 \ulcornerm. For cell data base, the electric characteristics of each cell is investigated and delay is characterized in terms of fanout. As the testing results of Ring Oscillator among the cell library, the average delay time for Inverter is 1.05 (ns), and the delay time due to channel routing metal is 0.65(ps)per unit length.

  • PDF

Measurement and Prediction of 3-Dimensional Thermo-Mechanical Propertoes of Carbon-phenolic 8-harness Satin Weave Composites (탄소/페놀 8-매 주자직 복합재료의 3차원 열기계적 등가물성치에 관한 연구)

  • U,Gyeong-Sik;Kim,Pil-Jong;Yun,Gwang-Jun;Gu,Nam-Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.41-52
    • /
    • 2003
  • In this paper, three-dimensional thermo-mechanical properties of carbon-phenolic 8-hamess satin weave composites were predicted considering geometric parameters of microstructures. The effective properties were calculated by a series of numerical experiments based on unit cell analysis. The microstructural details were modeled through macro-elements, and the periodic boundary conditions were derived for corresponding un it cell types. The Monte Carlo method was employed to consider the random phase shift between the layers, and the results were investigated on the effect of the geometric parameters of shift, number of layers and waviness ratios. Experimental tests were also performed and the results were compared.

Probability-based design charts for stone column-improved ground

  • Deb, Kousik;Majee, Anjan
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.539-552
    • /
    • 2014
  • A simplified probability-based design charts for stone column-improved ground have been presented based on the unit cell approach. The undrained cohesion ($c_u$) and coefficient of radial consolidation ($c_r$) of the soft soil are taken as the most predominant random variables. The design charts are developed to estimate the diameter of the stone column or the spacing between the stone columns by employing a factored design value of $c_r$ and $c_u$ so as to satisfy a specific probability level of the target degree of consolidation and/or a target safe load that needs to be achieved in a specified timeframe. The design charts can be used by the practicing engineers to design the stone column-improved ground by considering consolidation and /or bearing capacity of the improved ground.