참고문헌
- Ababneh, A., Benboudjema, F., and Xi, Y.P. (2003), "Chloride penetration in nonsaturated concrete", J. Mater. Civil Eng., 15(2), 183-191. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(183)
- Adamson, A.W. (1990), Physical Chemistry of Surfaces, 5th Edition, John Wiley & Sons.
- Andrade, C. (1993), "Calculation of chloride diffusion coefficients in concrete from ionic migration measurement", Cement Concrete Res., 23(3), 724-742. https://doi.org/10.1016/0008-8846(93)90023-3
- ASTM C1202-94 (1994), Standard test method for electrical indication of concrete's ability to resist chloride ion penetration, American Society for Testing and Materials.
- Barthel, J.M.G., Krienke, H. and Kunz, W. (1998), Physical chemistry of electrolyte solutions, Modern aspects, Springer-Verlag, New York.
- Bastidas, A.E., Saanchez, S.M. and Chateauneuf, A. (2008), "Coupled reliability model of biodeterioration, chloride ingress and cracking for reinforced concrete structures", Struct. Safe., 30(2), 110-129. https://doi.org/10.1016/j.strusafe.2006.09.001
- Bejaoui, S. and Bary, B. (2007), "Modeling of the link between microstructure and effective diffusivity of cement pastes using a simplified composite model", Cement Concrete Res., 37(3), 469-480. https://doi.org/10.1016/j.cemconres.2006.06.004
- Bertron, A., Duchesne, J. and Escadeillas, G. (2005), "Attack of cement pastes exposed to organic acids in manure", Cement Concrete Comp., 27(9-10), 898-909. https://doi.org/10.1016/j.cemconcomp.2005.06.003
- Carde, C. and François, R. (1997), "Effect on the leaching of calcium hydroxide from cement paste on mechanical properties", Cement Concrete Res., 27(4), 539-550. https://doi.org/10.1016/S0008-8846(97)00042-2
- CCES 01-2004 (2004), Rapid test method for diffusion coefficient of chloride ion in concrete, Chinese Civil Engineering Society Standards.
- Chandra, A. and Bagchi, B. (1999), "Ion conductance in electrolyte solutions", J. Chem. Phys., 110(20), 1024-1034.
- Chatterji, S. (1994), "Transportation of ions through cement based materials, Part I. Fundamental equations and basic measurement techniques", Cement Concrete Res., 24(5), 907-912. https://doi.org/10.1016/0008-8846(94)90010-8
- Clifton, J.R. and Knab, L.I. (1989), Service life of concrete, NISTIR, 89-4086, US Department of Commerce.
- Clifton, J.R. and Ponnersheim, J.M. (1995), Sulfate attack of cementitious materials: volumetric relations and expansions, NISTIR 5390, Building and Fire Research Laboratory, National Institute of Standards and Technology, Gaithersburg.
- Coussy, O. and Ulm, F.J. (2001), "Elements of durability mechanics of concrete structures", Proceeding of Creep, Shrinkage and Durability Mechanics of Concrete and other Quasi-Brittle Materials, Amsterdam, Netherlands, 3993-4009.
- Garboczi, E.J. (1990), "Permeability, diffusivity, and microstructural parameters: a critical review", Cement Concrete Res., 20(4), 591-601. https://doi.org/10.1016/0008-8846(90)90101-3
- Garboczi, E.J. and Bentz, D.P. (1998), "Multi-scale analytical/numerical theory of the diffusivity of concrete", Adv. Cem. Based Mater., 8(2), 77-88. https://doi.org/10.1016/S1065-7355(98)00010-8
- Huang, Z.Q. (1983), Introduction of electrolyte solution theory, Science Press, Beijing. (In Chinese)
- Kuhl, D. and Meschke, G. (2003), "Computational modeling of transport mechanisms in reactive porous media- Application to calcium leaching of concrete", Comput. Model. Concr. Struct., EURO-C, 473-482.
- Lee, H., Cody, R.D., Cody, A.M. and Spry, P.G. (2005), "The formation and role of ettringite in Iowa highway concrete deterioration", Cement Concrete Res., 35(2), 332-343. https://doi.org/10.1016/j.cemconres.2004.05.029
- Lee, W.H. and Wheaton, R.J. (1979), "Conductance of symmetrical, unsymmetrical and mixed electrolytes. Part 3: Examination of new model and analysis of data for symmetrical electrolytes", J. Chem. Soc., Faraday Trans., 75, 1128-1145. https://doi.org/10.1039/f29797501128
- Levi, M.D., Demadrille, R. and Pron, A. (2005), "Application of a novel refinement method for accurate determination of chemical diffusion coefficients in electroactive materials by potential step technique", J. Electrochem. Soc., 152(2), 61-67. https://doi.org/10.1149/1.1851033
- Li, L.Y. and Page, C.L. (1998), "Modelling of electrochemical chloride extraction from concrete: Influence of ionic activity coefficients", Comput. Mater. Sci., 9, 303-308. https://doi.org/10.1016/S0927-0256(97)00152-3
- Marchand, J., Samson, E., Maltais, Y., Lee, R.J. and Sahu, S. (2002), "Predicting the performance of concrete structures exposed to chemically aggressive environment-field validation", Mater. Struct., 35(3), 623-631.
- Masi, M., Colella, D., Radaelli, G. and Bertolini, L. (1997), "Simulation of chloride penetration in cement-based materials", Cement Concrete Res., 27(10), 1951-1601.
- Moore, W.J. (1972), "Physical chemistry"(4th ed.), Prentice-Hall Englewood Cliffs, New Jersey.
- Nakarai, K., Ishida, T. and Maekawa, K. (2006), "Modeling of calcium leaching from cement hydrates coupled with micro-pore formation", J. Adv. Concrete Tech., 4(3), 395-407. https://doi.org/10.3151/jact.4.395
- NT BUILD 492. (1999), Concrete, mortar and cement-based repair materials: chloride migration coefficient from non-steady-state migration experiments, Approved 1999-11, Finland.
- Onsager, L. and Fuoss, R.M. (1932), "Irreversible processes in electrolytes: diffusion, conductance, and viscous flow in arbitrary mixtures of strong electrolytes", J. Phys. Chem., 35, 2689-2778.
- Pankow, J.F. (1994), Aquatic chemistry concepts, Lewis Publishers.
- Park, Y.S., Suh, J.K. and Lee, J.H. (1999), "Strength deterioration of high strength concrete in sulfate environment", Cement Concrete Res., 29(9), 1397-1402. https://doi.org/10.1016/S0008-8846(99)00106-4
- Promentilla, M.A.B., Sugiyama, T., Hitomi, T. and Takeda, N. (2009), "Quantification of tortuosity in hardened cement pastes using synchrotron-based X-ray computed microtomoraphy", Cement Concrete Res., 39(6), 548-557. https://doi.org/10.1016/j.cemconres.2009.03.005
- Ritsema, C.J. (2006), "Estimation of activity coefficients of individual ions in solutions with ionic strengths up to 0.3 mol dm3", Eur. J. Soil Sci., 44(2), 307-315.
- Saetta, A.V., Scotta, R.V. and Vitaliani, R.V. (1993), "Analysis of chloride diffusion into partially saturated concrete", ACI Mater., 90(5), 441-451.
- Samson, E., Lemaire, G., Marchand, J. and Beaudoin, J.J. (1999), "Modeling chemical activity effects in strong ionic solutions", Comput. Mater. Sci., 15, 285-294. https://doi.org/10.1016/S0927-0256(99)00017-8
- Suryavanshi, A.K. (2002), "Estimation of diffusion coefficient for chloride ion penetration into structural concrete", ACI Mater., 99(5), 441-449.
- Tang, L. and Nilsson, L.O. (1992), "Rapid determination of chloride diffusivity of concrete by applying an electric field", ACI Mater., 49(1), 49-53.
- Tang, L. and Srensen, H.E. (2001), "Precision of the Nordic test methods for measuring the chloride diffusion/ migration coefficients of concrete", Mater. Struct., 34, 479-485. https://doi.org/10.1007/BF02486496
- Ulm, F.J., Lemarchand, E. and Heukamp, F.H. (2003), "Elements of chemomechanics of calcium leaching of cement-based materials at different scales", Eng. Fract. Mech. 70(7-8), 871-889. https://doi.org/10.1016/S0013-7944(02)00155-8
- Xi, Y., Willam, K. and Frangopol, D.M. (2000), "Multi-scale modeling of interactive diffusion processes in concrete", J. Eng. Mech., 126(3), 258-265. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:3(258)
- Yoon, I.S. (2009), "Simple approach to calculate chloride diffusivity of concrete considering carbonation", Comput. Concrete, 6(1), 1-18. https://doi.org/10.12989/cac.2009.6.1.001
- Zheng, J.J. and Zhou, X.Z. (2007), "Prediction of the chloride diffusion coefficient of concrete", Mater. Struct.,40(7), 693-701. https://doi.org/10.1617/s11527-006-9182-0
피인용 문헌
- Numerical investigation on tortuosity of transport paths in cement-based materials vol.13, pp.3, 2014, https://doi.org/10.12989/cac.2014.13.3.309
- Numerical investigation on expansive volume strain in concrete subjected to sulfate attack vol.36, 2012, https://doi.org/10.1016/j.conbuildmat.2012.05.020
- Numerical simulation on time-dependent mechanical behavior of concrete under coupled axial loading and sulfate attack vol.142, 2017, https://doi.org/10.1016/j.oceaneng.2017.07.016
- Prediction of the Effective Diffusion Coefficient of Chloride Ions in Cement-Based Composite Materials vol.24, pp.9, 2012, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000477
- Temperature effect on multi-ionic species diffusion in saturated concrete vol.13, pp.2, 2014, https://doi.org/10.12989/cac.2014.13.2.149
- Simulations on Expansive Strain of Concrete Caused by Ettringite Growth under Sulfate Attack vol.250-253, pp.1662-8985, 2011, https://doi.org/10.4028/www.scientific.net/AMR.250-253.1906
- Simulations on Sulfate Ion Diffusivity in Concrete Column under Random Excitations vol.261-263, pp.1662-8985, 2011, https://doi.org/10.4028/www.scientific.net/AMR.261-263.275
- Numerical investigation of the external sulfate attack induced expansion response of cement paste by using crystallization pressure vol.27, pp.2, 2019, https://doi.org/10.1088/1361-651X/aaf76a
- A method of global-local analyses of structures involving local heterogeneities and propagating cracks vol.38, pp.4, 2011, https://doi.org/10.12989/sem.2011.38.4.529
- Numerical investigation on gypsum and ettringite formation in cement pastes subjected to sulfate attack vol.19, pp.1, 2010, https://doi.org/10.12989/cac.2017.19.1.019
- Modeling of time-varying stress in concrete under axial loading and sulfate attack vol.19, pp.2, 2010, https://doi.org/10.12989/cac.2017.19.2.143
- Multiscale Numerical Simulation of Expansion Response of Hardened Cement Paste at Dormant Period of External Sulfate Attack vol.145, pp.7, 2010, https://doi.org/10.1061/(asce)em.1943-7889.0001622
- Evaluation of elastic modulus of cement paste in sodium sulfate solution by an advanced X-CT-hydration-deterioration model with SC method vol.32, pp.9, 2020, https://doi.org/10.1680/jadcr.18.00142