• Title/Summary/Keyword: concrete ion

Search Result 566, Processing Time 0.023 seconds

A Study on the $Cl^-$ ion property of antiwashout concrete using the superplasticizer agent (고유동화재를 사용한 수중불분리콘크리트의 Cl 이온 특성고찰)

  • 김동석;최재웅;구본창;하재담;엄태형;신연식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.117-122
    • /
    • 1999
  • The antiwashout concrete which is a type of specific concrete is manufactured by using a plenty of superplasticizer with the non-dispersible underwater concrete admixture, and the application of it on construction site is being increased. But when we measure choride ion content by using the potentiographic tester, because it is over total chloride ion content(0.3kg/㎥ under) of Korean Concrete Specification, the claim of construction site is being presented on the quality of antiwashout concrete. Accordingly, hte aim of this study is to verify actual chloride ion content of antiwashout concrete by chloride ion analysis due to chemical admixtures by performance of antiwashout concrete. In conclusion the actual chloride ion content of antiwashout concrete is overestimated by anion($OH^-, SO4^{-2}, S^{-2}, etc) of chemical admixtures, and is proved to be as low as that of ordinary concrete.

  • PDF

Experimental Study of Chloride Binding in Concrete with Mneral Amixtures (혼화재를 혼입한 콘크리트의 염화물 고정화에 관한 실험적 연구)

  • 박정준;고경택;김도겸;김성욱;하진규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.787-792
    • /
    • 2001
  • The chloride ion penetrating into concrete is classified as the fixed chloride ion being bound in reacting to cement hydrate and the free chloride ion having a direct effect on rebar corrosion because being in solution inside porosity of concrete. Therefore, in order to study the diffusion properties of chloride ion, it is needed to evaluate binding chloride ion in concrete. In this study, we tried to give a fundamental information on diffusion of chloride ion in concrete with mineral admixtures through analysis of micro-structure transformations in concrete and effects on binding of chloride ion in cement paste when mixed with fly-ash, blast furnace slag, silica fume etc. which are used to improve durability and permeability of concrete

  • PDF

Modeling of diffusion-reaction behavior of sulfate ion in concrete under sulfate environments

  • Zuo, Xiao-Bao;Sun, Wei;Li, Hua;Zhao, Yu-Kui
    • Computers and Concrete
    • /
    • v.10 no.1
    • /
    • pp.79-93
    • /
    • 2012
  • This paper estimates theoretically the diffusion-reaction behaviour of sulfate ion in concrete caused by environmental sulfate attack. Based on Fick's second law and chemical reaction kinetics, a nonlinear and nonsteady diffusion-reaction equation of sulfate ion in concrete, in which the variable diffusion coefficient and the chemical reactions depleting sulfate ion concentration in concrete are considered, is proposed. The finite difference method is utilized to solve the diffusion-reaction equation of sulfate ion in concrete, and then it is used to simulate the diffusion-reaction process and the concentration distribution of sulfate ion in concrete. Afterwards, the experiments for measuring the sulfate ion concentration in concrete are carried out by using EDTA method to verify the proposal model, and results show that the proposed model is basically in agreement with the experimental results. Finally, Numerical example has been completed to investigate the diffusion-reaction behavior of sulfate ion in the concrete plate specimen immersed into sulfate solution.

Chloride-ion Test of Seaside Concrete Structure (임해 콘크리트 구조물의 염분 침투량 분석)

  • 이장화;장종탁
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.123-124
    • /
    • 1990
  • Seaside concrete structure is deteriorated by chloride-ion, sulphate and salt cristalization in concrete pore. Therefore the amount of these chemical substance should be analyzed for evaluating the durability of seaside concrete structure. In this study, the amount of chloride-ion in concrete was surveyed in order to estimate the damage state of concrete structure within am influence of seawater.

  • PDF

Influence of Cement Type on the Diffusion Characteristics of Chloride Ion in Concrete (콘크리트의 염소이온 확산특성에 미치는 시멘트 종류의 영향)

  • Park, Jae-Im;Bae, Su-Ho;Lee, Kwang-Myong;Kim, Jee-Sang;Cha, Soo-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.573-576
    • /
    • 2006
  • To predict service life of concrete structures exposed to chloride attack, surface chloride concentration, diffusion coefficient of chloride ion, and chloride corrosion threshold value in concrete, are used as important factors. of these, as the diffusion coefficient of chloride ion for concrete is strongly influenced by concrete quality and environmental conditions of structures and may significantly change the service life of structures, it is considered as the most important factor for service life prediction. The qualitative factors affecting the penetration and diffusion of chloride ion into concrete are water-binder(W/B) ratio, age, cement type and constituents, chloride ion concentration of given environment, wet and dry conditions, etc. In this paper the influence of cement type on the diffusion characteristics of chloride ion in concrete was investigated through the chloride ion diffusion test. For this purpose, the diffusion characteristics in concrete with cement type such as ordinary portland cement(OPC), binary blended cement(BBC), and ternary blended cement(TBC) were estimated for the concrete with W/B ratios of 32% and 38%, respectively. It was observed from the test that the difussion characteristics of BBC containing OPC and ground granulated blast-furnace slag was found to be most excellent of the cement type used in this study.

  • PDF

A Chloride Ion Diffusion Model in Blast Furnace Slag Concrete (고로슬래그 미분말 콘크리트의 염화물이온 확산모델)

  • 이석원;박상순;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.467-472
    • /
    • 2000
  • It is known that chloride ion in concrete destroys the passive film of reinforcement inside concrete and accelerates corrosion which is the most influencing factor to durability of concrete structures. In this thesis, a chloride ion diffusion model for blast furnace slag(BFS) concrete, which has better resistance to both damage due to salt and chloride ion penetration than ordinary portland cement concrete, is proposed by modifying existing model of normal concrete. Proposed model is verified by comparing diffusion analysis results with both results by indoor chloride penetration test for specimens and field test results for actual RC bridge pier. Also, the optimum resistance condition to chloride penetration is obtained according to degrees of fineness and replacement ratios of BFS concrete. As a result, resistance to chloride ion penetration for BFS concrete is more affected by replacement ratio than degree of fineness.

  • PDF

Research on chloride ion diffusivity of concrete subjected to CO2 environment

  • Zhang, Shiping;Zhao, Binghua
    • Computers and Concrete
    • /
    • v.10 no.3
    • /
    • pp.219-229
    • /
    • 2012
  • Carbonation is a widespread degradation of concrete and may be coupled with more severe degradations. An experimental investigation was carried out to study the effect of carbonation on chloride ion diffusion of concrete. The characteristic of concrete after carbonation was measured, such as carbonation depth, strength and pore structure. Results indicated that carbonation depth has a good linear relation with square root of carbonate time, and carbonation can improve compressive strength, but lower flexural strength. Results about pore structure of concrete before and after carbonation have shown that carbonation could cause a redistribution of the pore sizes and increase the proportion of small pores. It also can decrease porosities, most probable pore size and average pore diameters. Chloride ion diffusion of concrete after carbonation was studied through natural diffusion method and steady state migration testing method respectively. It is supposed that the chloride ion concentration of carbonation region is higher than that of the sound region because of the separation of fixed salts, and chloride ion diffusion coefficient was increased due to carbonation action evidently.

Modeling of ion diffusion coefficient in saturated concrete

  • Zuo, Xiao-Bao;Sun, Wei;Yu, Cheng;Wan, Xu-Rong
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.421-435
    • /
    • 2010
  • This paper utilizes the modified Davis model and the mode coupling theory, as parts of the electrolyte solution theory, to investigate the diffusivity of the ion in concrete. Firstly, a computational model of the ion diffusion coefficient, which is associated with ion species, pore solution concentration, concrete mix parameters including water-cement ratio and cement volume fraction, and microstructure parameters such as the porosity and tortuosity, is proposed in the saturated concrete. Secondly, the experiments, on which the chloride diffusion coefficient is measured by the rapid chloride penetration test, have been carried out to investigate the validity of the proposed model. The results indicate that the chloride diffusion coefficient obtained by the proposed model is in agreement with the experimental result. Finally, numerical simulation has been completed to investigate the effects of the porosity, tortuosity, water-cement ratio, cement volume fraction and ion concentration in the pore solution on the ion diffusion coefficients. The results show that the ion diffusion coefficient in concrete increases with the porosity, water-cement ratio and cement volume fraction, while we see a decrease with the increasing of tortuosity. Meanwhile, the ion concentration produces more obvious effects on the diffusivity itself, but has almost no effects on the other ions.

The Analysis of Chloride Ion Penetration into a Concrete Structure in Marine Environment (해안환경하에 있는 콘크리트의 염분침투해석)

  • Cho, Sun-Kyu;Jeon, Gui;Shin, Chee-Burm
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.68-74
    • /
    • 1998
  • An increase of concrete construction in marine environments as well as an increasing use of marine aggregate at the mixing stage of concrete has provoked an important problem. A high concentration of chloride ion in the vicinity of steel bars in concrete is the principal cause of premature reinforcement corrosion in concrete structures. In this study, the behavior of chloride ions introduced into concrete from concrete surface by marine evironment was analysed. A mathematical model including the diffusion of chloride ion in aqueous phase of pores, the adsorption and desorption of chloride ions to and from the surface of solid phase of concrete and the chemical reactions of chloride ions with solid phase was presented. Finite element method was employed to carry out numerical analysis. The results of this study may be used to predict the onset of reinforcement corrosion and to identify the maximum limit of chloride ions contained in concrete admixtures.

  • PDF

A study on effects of water-cement ratio and crack width on chloride ion transmission rate in concrete

  • Li, Yue;Chen, Xiaohan;Zhang, Guosheng
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.387-394
    • /
    • 2017
  • To study the effects of water-cement ratio changes and cracks on chloride ion transmission rate in cracked concrete, RCM method was adopted to accelerate the diffusion of chloride ion in cracked concrete, and the changes in chloride ion concentration and around the cracks are inferred by finite-element method. The test results show that as far as prefabricated cracks on concrete components are concerned, the width thresholds of two cracks on the concrete specimens with a water-cement ratio of 0.5 and 0.6 are 0.05 mm and 0.1 mm respectively, the width threshold of two cracks on the concrete specimens with a water-cement ratio of 0.4 is 0.05 mm and 0.2 mm respectively; and the results of numerical simulation show that the smaller the water-cement ratio is, the more significant effects of cracks on chloride ion transmission rate are. As a result, more attention shall be paid to the crack prevention, repairing and strengthening for high-strength concrete.