DOI QR코드

DOI QR Code

Study on the micro-scale simulation of wind field over complex terrain by RAMS/FLUENT modeling system

  • Li, Lei (Shenzhen National Climate Observatory, Shenzhen Meteorological Bureau) ;
  • Zhang, Li-Jie (Shenzhen National Climate Observatory, Shenzhen Meteorological Bureau) ;
  • Zhang, Ning (School of Atmospheric Sciences, Nanjing University) ;
  • Hu, Fei (State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences) ;
  • Jiang, Yin (Shenzhen National Climate Observatory, Shenzhen Meteorological Bureau) ;
  • Xuan, Chun-Yi (Beijing Municipal Climate Center, Beijing Meteorological Bureau) ;
  • Jiang, Wei-Mei (School of Atmospheric Sciences, Nanjing University)
  • Received : 2009.06.15
  • Accepted : 2010.05.19
  • Published : 2010.11.25

Abstract

A meteorological model, RAMS, and a commercial computational fluid dynamics (CFD) model, FLUENT are combined as a one-way off-line nested modeling system, namely, RAMS/FLUENT system. The system is experimentally applied in the wind simulation over a complex terrain, with which numerical simulations of wind field over Foyeding weather station located in the northwest mountainous area of Beijing metropolis are performed. The results show that the method of combining a meteorological model and a CFD model as a modeling system is reasonable. In RAMS/FLUENT system, more realistic boundary conditions are provided for FLUENT rather than idealized vertical wind profiles, and the finite volume method (FVM) of FLUENT ensures the capability of the modeling system on describing complex terrain in the simulation. Thus, RAMS/FLUENT can provide fine-scale realistic wind data over complex terrains.

Keywords

References

  1. Dudhia, J., Gill, D., Manning, K., Wang, W., Bruyere, C., Kelly, S. and Lackey, K. (2005), PSU/NCAR Mesoscale modeling system tutorial class notes and user's guide: MM5 modeling system version 3, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado, USA.
  2. Enger, L. and Kora in, D. (1995), "Simulations of dispersion in complex terrain using a higher-order closure model", Atmos. Environ., 29(18), 2449-2465. https://doi.org/10.1016/1352-2310(95)00160-Z
  3. Li, L., Hu, F., Jiang, J.H. and Cheng, X.L. (2007), "An application of the RAMS/FLUENT system on the multiscale numerical simulation of urban surface layer - a preliminary study", Adv. Atmos. Sci., 24(2), 271-280. https://doi.org/10.1007/s00376-007-0271-y
  4. Li, L., Hu, F., Cheng, X.L. and Han, H.Y. (2004), "The application of computational fluid dynamics to pedestrian level wind safety problem induced by high-rise buildings", Chinese Phys., 13(7), 1070-1075. https://doi.org/10.1088/1009-1963/13/7/018
  5. Li, L., Hu, F., Cheng, X.L., Jiang, J.H. and Ma, X.G. (2006), "Numerical simulation of the flow within and over an intersection model with Reynolds-averaged Navier-Stokes method", Chinese Phys., 15(1), 149-155. https://doi.org/10.1088/1009-1963/15/1/024
  6. Montavon, C. (1998), "Validation of a non-hydrostatic numerical model to simulate stratified wind fields over complex topography", J. Wind Eng. Ind. Aerod., 74-76, 273-282. https://doi.org/10.1016/S0167-6105(98)00024-5
  7. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W. and Powers, J.G. (2008), A description of the advanced research WRF version 3, Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado, USA.
  8. Stangroom, P. (2004), CFD modelling of wind flow over terrain, PhD Thesis, University of Nottingham.
  9. Tong, H., Walton, A., Sang, J. and Chan, J.C.L. (2005), "Numerical simulation of the urban boundary layer over the complex terrain of Hong Kong", Atmos. Environ., 39, 3549-3563. https://doi.org/10.1016/j.atmosenv.2005.02.045
  10. Uchida, T. and Ohya, Y. (1999), "Numerical simulation of atmospheric flow over complex terrain", J. Wind Eng. Ind. Aerod., 81, 283-293. https://doi.org/10.1016/S0167-6105(99)00024-0
  11. Uchida, T. and Ohya, Y. (2003), "Large-eddy simulation of turbulent airflow over complex terrain", J. Wind Eng. Ind. Aerod., 91(1-2), 219-229. https://doi.org/10.1016/S0167-6105(02)00347-1
  12. Venkatesan, R., Mollmann-Coers, M. and Natarajan, A. (1997), "Modeling wind field and pollution transport over a complex terrain using an emergency dose information code SPEEDI", J. Appl. Meteorol., 36, 1138-1159. https://doi.org/10.1175/1520-0450(1997)036<1138:MWFAPT>2.0.CO;2
  13. Walko, R.L. and Tremback, C.J. (2006), RAMS: regional atmospheric modeling system (version 6.0) - model input namelist parameters, Document Edition 1.4, Atmet LLC, Boulder, Colorado, USA.
  14. Walko, R.L. and Tremback, C.J. (1997), RAMS: the regional atmospheric modeling system, Technical Description, Atmet LLC, Boulder, Colorado, USA.
  15. Yamada, T. (1992), "A numerical-simulation of air-flows and SO-2 concentration distributions in an arid southwestern valley", Atmos. Environ. Gen. Top., 26, 1771-1781. https://doi.org/10.1016/0960-1686(92)90074-U

Cited by

  1. The appropriate shape of the boundary transition section for a mountain-gorge terrain model in a wind tunnel test vol.20, pp.1, 2015, https://doi.org/10.12989/was.2015.20.1.015
  2. Numerical Simulation of a Lee Wave Case over Three-Dimensional Mountainous Terrain under Strong Wind Condition vol.2013, 2013, https://doi.org/10.1155/2013/304321
  3. Nesting an incompressible-flow code within a compressible-flow code: A two-dimensional study vol.115, 2015, https://doi.org/10.1016/j.compfluid.2015.03.005
  4. Study on the Flow Field of Air Floating Pool of Pressurized Dissolved-Air Floatation Water Treatment System vol.706-708, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.706-708.565
  5. A preliminary study of assimilating numerical weather prediction data into computational fluid dynamics models for wind prediction vol.99, pp.4, 2011, https://doi.org/10.1016/j.jweia.2011.01.023
  6. A Study on Microscale Wind Simulations with a Coupled WRF-CFD Model in the Chongli Mountain Region of Hebei Province, China vol.10, pp.12, 2010, https://doi.org/10.3390/atmos10120731