Acknowledgement
Supported by : National Research Foundation of Korea
References
- Adams, R.D., Cawley, P., Pye, C.J. and Stone, B.J. (1978), "A vibration technique for non-destructively assessing the integrity of structures", J. Mech. Eng. Sci., 20(2), 93-100. https://doi.org/10.1243/JMES_JOUR_1978_020_016_02
- Analog Devices Inc. (2009), Datasheet of AD5933, Available at http://www.analog.com.
- Bhalla, S. and Soh, C.K. (2003), "Structural impedance based damage diagnosis by piezo-transducers", Earthq. Eng. Struct. D., 32(12), 1897-1916. https://doi.org/10.1002/eqe.307
- Cho, S, Yun, C.B., Lynch, J.P., Zimmerman, A.T., Spencer, B.F. and Nagayama, T. (2008), "Smart wireless sensor technology for structural health monitoring of civil structures", Int. J. Steel Struct., 8(4), 267-276.
- Jeyasehar, C.A. and Sumangala, K. (2006), "Damage assessment of prestressed concrete beams using Artificial Neural Network (ANN) approach", Comput. Struct., 84, 1709-1718. https://doi.org/10.1016/j.compstruc.2006.03.005
- Kim, J.T., Na, W.B., Hong, D.S. and Park, J.H. (2006), "Global and local health monitoring of plate-girder bridges under uncertain temperature conditions", Int. J.Steel Struct., 6, 369-376.
- Kim, J.T., Park, J.H., Hong, D.S., Cho, H.M., Na, W.B. and Yi, J.H. (2009), "Vibration and impedance monitoring for prestress-loss prediction in PSC girder bridges", Smart Struct. Syst., 5(1), 81-94. https://doi.org/10.12989/sss.2009.5.1.081
- Kim, J.T., Park, J.H., Hong, D.S. and Park, W.S. (2010), "Hybrid health monitoring of prestressed concrete girder bridges by sequential vibration-impedance approaches", Eng. Struct., 32, 115-128. https://doi.org/10.1016/j.engstruct.2009.08.021
- Kim, J.T., Ryu, Y.S., Cho, H.M. and Stubbs, N. (2003a), "Damage identification in bean-type structures: frequencybased method vs mode-shape-based method", Eng. Struct., 25, 57-67. https://doi.org/10.1016/S0141-0296(02)00118-9
- Kim, J.T., Yun, C.B., Ryu, Y.S. and Cho, H.M. (2004), "Identification of prestress-loss in PSC beams using modal information", Struct. Eng. Mech., 17(3-4), 467-482. https://doi.org/10.12989/sem.2004.17.3_4.467
- Kim, J.T. (2001), "Crack detection scheme for steel plate-girder bridges via vibration-based system identification", KSCE J. Civil Eng., 5(1), 1-10.
- Kim, J.T., Lee, Y.K., Kim, J.H. and Baek, J.H. (2002), "GUI software system for damage identification in plategirder bridges", KSCE J. Civil Eng., 6(2), 107-118.
- Kim, J.T., Yun, C.B. and Yi, J.H. (2003b), "Temperature effects on frequency-based damage detection in plategirder bridges", KSCE J. Civil Eng., 7(6), 725-733. https://doi.org/10.1007/BF02829141
- Krishnamurthy, V., Fowler, K. and Sazonov, E. (2008), "The effect of time synchronization of wireless sensors on the modal analysis of structures", Smart Mater. Struct., 17, 1-13.
- Liang, C., Sun, F.P. and Rogers, C.A. (1994), "Coupled electromechanical analysis of adaptive material systemsdetermination of the actuator power consumption and system energy transfer", J. Intel. Mat. Syst. Str., 5(1), 12-20. https://doi.org/10.1177/1045389X9400500102
- Lu, K.C., Loh, C.H., Yang, Y.S., Lynch, J.P. and Law, K.H. (2008), "Real-time structural damage detection using wireless sensing and monitoring system", Smart Struct. Syst., 4(6), 759-777. https://doi.org/10.12989/sss.2008.4.6.759
- Lynch, J.P., Sundararajan, A., Law, K.H., Kiremidjian, A.S., Kenny, T. and Carryer, E. (2003), "Embedment of structural monitoring algorithms in a wireless sensing unit", Struct. Eng. Mech., 15(3), 385-297.
- Lynch J.P., Wang, W., Loh, K.J., Yi, J.H. and Yun, C.B. (2006), "Performance monitoring of the Geumdang Bridge using a dense network of high-resolution wireless sensors", Smart Mater. Struct., 15, 1561-1575. https://doi.org/10.1088/0964-1726/15/6/008
- Miyamoto, A., Tei, K., Nakamura, H. and Bull, J.W. (2000), "Behavior of prestressed beam strengthened with external tendons", J.Struct. Eng., 126, 1033-1044. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1033)
- Mascarenas, D.L., Todd, M.D., Park, G. and Farrar, C.R. (2007), "Development of an impedance-based wireless sensor node for structural health monitoring", Smart Mater. Struct., 16, 2137-2145. https://doi.org/10.1088/0964-1726/16/6/016
- Nagayama, T. (2007), Structural health monitoring using smart sensors, Ph.D Dissertation, University of Illinois at Urbana-Champaign, UC, USA.
- Nagayama, T., Sim, S.H., Miyamori, Y. and Spencer, B.F. (2007), "Issues in structural health monitoring employing smart sensors", Smart Struct. Syst., 3(3), 299-320. https://doi.org/10.12989/sss.2007.3.3.299
- Park, G., Cudney, H. and Inman, D.J. (2000), "Impedance-based health monitoring of civil structural components", J. Infrastruct. Syst.-ASCE, 6(4), 153-160. https://doi.org/10.1061/(ASCE)1076-0342(2000)6:4(153)
- Park, S., Ahmad, S., Yun, C.B. and Roh, Y. (2006), "Multiple crack detection of concrete structures using impedance-based structural health monitoring techniques", Exp. Mech., 46(5), 609-618. https://doi.org/10.1007/s11340-006-8734-0
- Rice, J.A. and Spencer, B.F. (2008), "Structural health monitoring sensor development for the Imote2 platform", Proc. of SPIE, 6932.
- Ruiz-Sandoval, M., Nagayama, T. and Spencer, B.F. (2006) "Sensor development using Berkeley mote platform", J. Earthq. Eng., 10(2), 289-309. https://doi.org/10.1080/13632460609350597
- Saiidi, M., Douglas, B. and Feng, S. (1994), "Prestress force effect on vibration frequency of concrete bridges," J. Struct. Eng., 120, 2233-2241. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:7(2233)
- Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W. and Nadler, B.R. (2003), A Review of Structural Health Monitoring Literature: 1996-2001, Los Alamos National Laboratory Report, LA-13976-MS, Los Alamos, NM
- Spencer, B.F., Ruiz-Sandoval, M.E. and Kurata, N. (2004), "Smart Sensing Technology: Opportunities and Challenges", Struct. Control Health Monit., 11, 349-368 https://doi.org/10.1002/stc.48
- Straser, E.G. and Kiremidjian, A.S. (1998) A Modular, Wireless Damage Monitoring System for Structure, Technical Report 128, John A. Blume Earthquake Engineering Center, Stanford University, Stanford, CA.
- Stubbs, N. and Osegueda, R. (1990), "Global non-destructive damage evaluation in solids", Int. J. Anal. Exp. Modal Anal., 5(2), 67-79.
- Sun, F.P., Chaudhry, Z., Rogers, C.A. and Majmundar, M. (1995), "Automated real-time structure health monitoring via signature pattern recognition", Proceedings of the SPIE North American Conference on Smart Structures and Materials, San Diego, CA.
- Yi, J.H. and Yun, C.B. (2004), "Comparative study on modal identification methods using output-only information", Struct. Eng. Mech., 17(3-4), 445-446. https://doi.org/10.12989/sem.2004.17.3_4.445
- Yun, C.B. and Bahng, E.Y. (2000) "Substructural identification using neural networks", Comput. Struct., 77(1), 41-52. https://doi.org/10.1016/S0045-7949(99)00199-6
- Wang, Y., Swartz, R.A., Lynch, J.P. and Law K.H. (2007), "Decentralized civil structural control using real-time wireless sensing and embedded computing", Smart Struct. Syst., 3(3), 321-340. https://doi.org/10.12989/sss.2007.3.3.321
- Zimmerman, A.T., Shiraishi, M., Swartz, R.A. and Lynch, J.P. (2008), "Automated modal parameter estimation by parallel processing within wireless monitoring systems", J. Infrastruct. Syst.- ASCE, 14(1), 102-113. https://doi.org/10.1061/(ASCE)1076-0342(2008)14:1(102)
Cited by
- Damage detection using curvatures obtained from vehicle measurements vol.7, pp.3, 2017, https://doi.org/10.1007/s13349-017-0233-8
- Field Implementation of Wireless Vibration Sensing System for Monitoring of Harbor Caisson Breakwaters vol.8, pp.12, 2012, https://doi.org/10.1155/2012/597546
- Recent R&D activities on structural health monitoring in Korea vol.3, pp.1, 2016, https://doi.org/10.12989/smm.2016.3.1.091
- Compensation of temperature effect on impedance responses of PZT interface for prestress-loss monitoring in PSC girders vol.17, pp.6, 2016, https://doi.org/10.12989/sss.2016.17.6.881
- Local dynamic characteristics of PZT impedance interface on tendon anchorage under prestress force variation vol.15, pp.2, 2015, https://doi.org/10.12989/sss.2015.15.2.375
- Development of a Multitype Wireless Sensor Network for the Large-Scale Structure of the National Stadium in China vol.9, pp.12, 2013, https://doi.org/10.1155/2013/709724
- Multiscale Acceleration-Dynamic Strain-Impedance Sensor System for Structural Health Monitoring vol.8, pp.10, 2012, https://doi.org/10.1155/2012/709208
- Feasibility Verification of Mountable PZT-Interface for Impedance Monitoring in Tendon-Anchorage vol.2015, 2015, https://doi.org/10.1155/2015/262975
- Wireless MEMS-Based Accelerometer Sensor Boards for Structural Vibration Monitoring: A Review vol.17, pp.2, 2017, https://doi.org/10.1109/JSEN.2016.2630008
- Substructural parameters and dynamic loading identification with limited observations vol.15, pp.1, 2015, https://doi.org/10.12989/sss.2015.15.1.169
- Smart sensing, monitoring, and damage detection for civil infrastructures vol.15, pp.1, 2011, https://doi.org/10.1007/s12205-011-0001-y
- Temperature-Compensated Damage Monitoring by Using Wireless Acceleration-Impedance Sensor Nodes in Steel Girder Connection vol.8, pp.9, 2012, https://doi.org/10.1155/2012/167120
- Multiscale Structural Health Monitoring of Cable-Anchorage System Using Piezoelectric PZT Sensors vol.9, pp.11, 2013, https://doi.org/10.1155/2013/254785
- Performance Evaluation of Imote2-Platformed Wireless Smart Sensor Node for Health Monitoring of Harbor Structures vol.23, pp.1, 2011, https://doi.org/10.9765/KSCOE.2011.23.1.026
- A wireless smart sensor network for automated monitoring of cable tension vol.23, pp.2, 2014, https://doi.org/10.1088/0964-1726/23/2/025006
- Development of a Customized Wireless Sensor System for Large-Scale Spatial Structures and Its Applications in Two Cases vol.16, pp.04, 2016, https://doi.org/10.1142/S0219455416400174
- Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring vol.18, pp.1, 2018, https://doi.org/10.3390/s18010262
- Vibration-based Structural Health Monitoring of Full-Scale Cable-Stayed Bridges Using Wireless Smart Sensors vol.12, pp.1, 2012, https://doi.org/10.9798/KOSHAM.2012.12.1.075
- Optimal Sensor Placement for Stay Cable Damage Identification of Cable-Stayed Bridge under Uncertainty vol.9, pp.12, 2013, https://doi.org/10.1155/2013/361594
- Temperature Effect on Impedance-based Damage Monitoring of Steel-Bolt Connection using Wireless Impedance Sensor Node vol.26, pp.1, 2012, https://doi.org/10.5574/KSOE.2012.26.1.027
- Wireless Impedance Sensor Node and Interface Washer for Damage Monitoring in Structural Connections vol.15, pp.6, 2012, https://doi.org/10.1260/1369-4332.15.6.871
- Quantification of temperature effect on impedance monitoring via PZT interface for prestressed tendon anchorage vol.26, pp.12, 2017, https://doi.org/10.1088/1361-665X/aa931b
- Vibration-based Damage Monitoring Scheme of Steel Girder Bolt-Connection Member by using Wireless Acceleration Sensor Node vol.25, pp.1, 2012, https://doi.org/10.7734/COSEIK.2012.25.1.081
- Development and Application of Structural Health Monitoring System Based on Piezoelectric Sensors vol.9, pp.11, 2013, https://doi.org/10.1155/2013/270927
- Damage Identification for Underground Structure Based on Frequency Response Function vol.18, pp.9, 2018, https://doi.org/10.3390/s18093033
- A multi-way data analysis approachfor structural health monitoring of a cable-stayed bridge pp.1741-3168, 2019, https://doi.org/10.1177/1475921718790727
- Experimental Verification of the Statistical Time-Series Methods for Diagnosing Wind Turbine Blades Damage pp.1793-6764, 2019, https://doi.org/10.1142/S021945541940008X
- Output-only modal identification approach for time-unsynchronized signals from decentralized wireless sensor network for linear structural systems vol.7, pp.1, 2011, https://doi.org/10.12989/sss.2011.7.1.059
- Hybrid acceleration-impedance sensor nodes on Imote2-platform for damage monitoring in steel girder connections vol.7, pp.5, 2010, https://doi.org/10.12989/sss.2011.7.5.393
- Solar-powered multi-scale sensor node on Imote2 platform for hybrid SHM in cable-stayed bridge vol.9, pp.2, 2010, https://doi.org/10.12989/sss.2012.9.2.145
- Smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection vol.9, pp.6, 2012, https://doi.org/10.12989/sss.2012.9.6.489
- Damage detection in beam-type structures via PZT's dual piezoelectric responses vol.11, pp.2, 2010, https://doi.org/10.12989/sss.2013.11.2.217
- Experimental investigation of magnetic-mount PZT-interface for impedance-based damage detection in steel girder connection vol.4, pp.3, 2017, https://doi.org/10.12989/smm.2017.4.3.237
- Advances and challenges in impedance-based structural health monitoring vol.4, pp.4, 2010, https://doi.org/10.12989/smm.2017.4.4.301
- PCA-based filtering of temperature effect on impedance monitoring in prestressed tendon anchorage vol.22, pp.1, 2018, https://doi.org/10.12989/sss.2018.22.1.057
- Preload Monitoring in Bolted Connection Using Piezoelectric-Based Smart Interface vol.18, pp.9, 2010, https://doi.org/10.3390/s18092766
- A multi-level 3D data registration approach for supporting reliable spatial change classification of single-pier bridges vol.38, pp.None, 2010, https://doi.org/10.1016/j.aei.2018.06.010
- Application of MEMS‐based accelerometer wireless sensor systems for monitoring of blast‐induced ground vibration and structural health: a review vol.9, pp.3, 2019, https://doi.org/10.1049/iet-wss.2018.5099
- Sensor Fault Diagnosis for Impedance Monitoring Using a Piezoelectric-Based Smart Interface Technique vol.20, pp.2, 2020, https://doi.org/10.3390/s20020510
- Understanding Impedance Response Characteristics of a Piezoelectric-Based Smart Interface Subjected to Functional Degradations vol.2021, pp.None, 2010, https://doi.org/10.1155/2021/5728679
- Numerical Simulation of Single-Point Mount PZT-Interface for Admittance-Based Anchor Force Monitoring vol.11, pp.11, 2010, https://doi.org/10.3390/buildings11110550