DOI QR코드

DOI QR Code

Autonomous smart sensor nodes for global and local damage detection of prestressed concrete bridges based on accelerations and impedance measurements

  • Received : 2009.10.14
  • Accepted : 2010.04.01
  • Published : 2010.07.25

Abstract

This study presents the design of autonomous smart sensor nodes for damage monitoring of tendons and girders in prestressed concrete (PSC) bridges. To achieve the objective, the following approaches are implemented. Firstly, acceleration-based and impedance-based smart sensor nodes are designed for global and local structural health monitoring (SHM). Secondly, global and local SHM methods which are suitable for damage monitoring of tendons and girders in PSC bridges are selected to alarm damage occurrence, to locate damage and to estimate severity of damage. Thirdly, an autonomous SHM scheme is designed for PSC bridges by implementing the selected SHM methods. Operation logics of the SHM methods are programmed based on the concept of the decentralized sensor network. Finally, the performance of the proposed system is experimentally evaluated for a lab-scaled PSC girder model for which a set of damage scenarios are experimentally monitored by the developed smart sensor nodes.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Adams, R.D., Cawley, P., Pye, C.J. and Stone, B.J. (1978), "A vibration technique for non-destructively assessing the integrity of structures", J. Mech. Eng. Sci., 20(2), 93-100. https://doi.org/10.1243/JMES_JOUR_1978_020_016_02
  2. Analog Devices Inc. (2009), Datasheet of AD5933, Available at http://www.analog.com.
  3. Bhalla, S. and Soh, C.K. (2003), "Structural impedance based damage diagnosis by piezo-transducers", Earthq. Eng. Struct. D., 32(12), 1897-1916. https://doi.org/10.1002/eqe.307
  4. Cho, S, Yun, C.B., Lynch, J.P., Zimmerman, A.T., Spencer, B.F. and Nagayama, T. (2008), "Smart wireless sensor technology for structural health monitoring of civil structures", Int. J. Steel Struct., 8(4), 267-276.
  5. Jeyasehar, C.A. and Sumangala, K. (2006), "Damage assessment of prestressed concrete beams using Artificial Neural Network (ANN) approach", Comput. Struct., 84, 1709-1718. https://doi.org/10.1016/j.compstruc.2006.03.005
  6. Kim, J.T., Na, W.B., Hong, D.S. and Park, J.H. (2006), "Global and local health monitoring of plate-girder bridges under uncertain temperature conditions", Int. J.Steel Struct., 6, 369-376.
  7. Kim, J.T., Park, J.H., Hong, D.S., Cho, H.M., Na, W.B. and Yi, J.H. (2009), "Vibration and impedance monitoring for prestress-loss prediction in PSC girder bridges", Smart Struct. Syst., 5(1), 81-94. https://doi.org/10.12989/sss.2009.5.1.081
  8. Kim, J.T., Park, J.H., Hong, D.S. and Park, W.S. (2010), "Hybrid health monitoring of prestressed concrete girder bridges by sequential vibration-impedance approaches", Eng. Struct., 32, 115-128. https://doi.org/10.1016/j.engstruct.2009.08.021
  9. Kim, J.T., Ryu, Y.S., Cho, H.M. and Stubbs, N. (2003a), "Damage identification in bean-type structures: frequencybased method vs mode-shape-based method", Eng. Struct., 25, 57-67. https://doi.org/10.1016/S0141-0296(02)00118-9
  10. Kim, J.T., Yun, C.B., Ryu, Y.S. and Cho, H.M. (2004), "Identification of prestress-loss in PSC beams using modal information", Struct. Eng. Mech., 17(3-4), 467-482. https://doi.org/10.12989/sem.2004.17.3_4.467
  11. Kim, J.T. (2001), "Crack detection scheme for steel plate-girder bridges via vibration-based system identification", KSCE J. Civil Eng., 5(1), 1-10.
  12. Kim, J.T., Lee, Y.K., Kim, J.H. and Baek, J.H. (2002), "GUI software system for damage identification in plategirder bridges", KSCE J. Civil Eng., 6(2), 107-118.
  13. Kim, J.T., Yun, C.B. and Yi, J.H. (2003b), "Temperature effects on frequency-based damage detection in plategirder bridges", KSCE J. Civil Eng., 7(6), 725-733. https://doi.org/10.1007/BF02829141
  14. Krishnamurthy, V., Fowler, K. and Sazonov, E. (2008), "The effect of time synchronization of wireless sensors on the modal analysis of structures", Smart Mater. Struct., 17, 1-13.
  15. Liang, C., Sun, F.P. and Rogers, C.A. (1994), "Coupled electromechanical analysis of adaptive material systemsdetermination of the actuator power consumption and system energy transfer", J. Intel. Mat. Syst. Str., 5(1), 12-20. https://doi.org/10.1177/1045389X9400500102
  16. Lu, K.C., Loh, C.H., Yang, Y.S., Lynch, J.P. and Law, K.H. (2008), "Real-time structural damage detection using wireless sensing and monitoring system", Smart Struct. Syst., 4(6), 759-777. https://doi.org/10.12989/sss.2008.4.6.759
  17. Lynch, J.P., Sundararajan, A., Law, K.H., Kiremidjian, A.S., Kenny, T. and Carryer, E. (2003), "Embedment of structural monitoring algorithms in a wireless sensing unit", Struct. Eng. Mech., 15(3), 385-297.
  18. Lynch J.P., Wang, W., Loh, K.J., Yi, J.H. and Yun, C.B. (2006), "Performance monitoring of the Geumdang Bridge using a dense network of high-resolution wireless sensors", Smart Mater. Struct., 15, 1561-1575. https://doi.org/10.1088/0964-1726/15/6/008
  19. Miyamoto, A., Tei, K., Nakamura, H. and Bull, J.W. (2000), "Behavior of prestressed beam strengthened with external tendons", J.Struct. Eng., 126, 1033-1044. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1033)
  20. Mascarenas, D.L., Todd, M.D., Park, G. and Farrar, C.R. (2007), "Development of an impedance-based wireless sensor node for structural health monitoring", Smart Mater. Struct., 16, 2137-2145. https://doi.org/10.1088/0964-1726/16/6/016
  21. Nagayama, T. (2007), Structural health monitoring using smart sensors, Ph.D Dissertation, University of Illinois at Urbana-Champaign, UC, USA.
  22. Nagayama, T., Sim, S.H., Miyamori, Y. and Spencer, B.F. (2007), "Issues in structural health monitoring employing smart sensors", Smart Struct. Syst., 3(3), 299-320. https://doi.org/10.12989/sss.2007.3.3.299
  23. Park, G., Cudney, H. and Inman, D.J. (2000), "Impedance-based health monitoring of civil structural components", J. Infrastruct. Syst.-ASCE, 6(4), 153-160. https://doi.org/10.1061/(ASCE)1076-0342(2000)6:4(153)
  24. Park, S., Ahmad, S., Yun, C.B. and Roh, Y. (2006), "Multiple crack detection of concrete structures using impedance-based structural health monitoring techniques", Exp. Mech., 46(5), 609-618. https://doi.org/10.1007/s11340-006-8734-0
  25. Rice, J.A. and Spencer, B.F. (2008), "Structural health monitoring sensor development for the Imote2 platform", Proc. of SPIE, 6932.
  26. Ruiz-Sandoval, M., Nagayama, T. and Spencer, B.F. (2006) "Sensor development using Berkeley mote platform", J. Earthq. Eng., 10(2), 289-309. https://doi.org/10.1080/13632460609350597
  27. Saiidi, M., Douglas, B. and Feng, S. (1994), "Prestress force effect on vibration frequency of concrete bridges," J. Struct. Eng., 120, 2233-2241. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:7(2233)
  28. Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W. and Nadler, B.R. (2003), A Review of Structural Health Monitoring Literature: 1996-2001, Los Alamos National Laboratory Report, LA-13976-MS, Los Alamos, NM
  29. Spencer, B.F., Ruiz-Sandoval, M.E. and Kurata, N. (2004), "Smart Sensing Technology: Opportunities and Challenges", Struct. Control Health Monit., 11, 349-368 https://doi.org/10.1002/stc.48
  30. Straser, E.G. and Kiremidjian, A.S. (1998) A Modular, Wireless Damage Monitoring System for Structure, Technical Report 128, John A. Blume Earthquake Engineering Center, Stanford University, Stanford, CA.
  31. Stubbs, N. and Osegueda, R. (1990), "Global non-destructive damage evaluation in solids", Int. J. Anal. Exp. Modal Anal., 5(2), 67-79.
  32. Sun, F.P., Chaudhry, Z., Rogers, C.A. and Majmundar, M. (1995), "Automated real-time structure health monitoring via signature pattern recognition", Proceedings of the SPIE North American Conference on Smart Structures and Materials, San Diego, CA.
  33. Yi, J.H. and Yun, C.B. (2004), "Comparative study on modal identification methods using output-only information", Struct. Eng. Mech., 17(3-4), 445-446. https://doi.org/10.12989/sem.2004.17.3_4.445
  34. Yun, C.B. and Bahng, E.Y. (2000) "Substructural identification using neural networks", Comput. Struct., 77(1), 41-52. https://doi.org/10.1016/S0045-7949(99)00199-6
  35. Wang, Y., Swartz, R.A., Lynch, J.P. and Law K.H. (2007), "Decentralized civil structural control using real-time wireless sensing and embedded computing", Smart Struct. Syst., 3(3), 321-340. https://doi.org/10.12989/sss.2007.3.3.321
  36. Zimmerman, A.T., Shiraishi, M., Swartz, R.A. and Lynch, J.P. (2008), "Automated modal parameter estimation by parallel processing within wireless monitoring systems", J. Infrastruct. Syst.- ASCE, 14(1), 102-113. https://doi.org/10.1061/(ASCE)1076-0342(2008)14:1(102)

Cited by

  1. Damage detection using curvatures obtained from vehicle measurements vol.7, pp.3, 2017, https://doi.org/10.1007/s13349-017-0233-8
  2. Field Implementation of Wireless Vibration Sensing System for Monitoring of Harbor Caisson Breakwaters vol.8, pp.12, 2012, https://doi.org/10.1155/2012/597546
  3. Recent R&D activities on structural health monitoring in Korea vol.3, pp.1, 2016, https://doi.org/10.12989/smm.2016.3.1.091
  4. Compensation of temperature effect on impedance responses of PZT interface for prestress-loss monitoring in PSC girders vol.17, pp.6, 2016, https://doi.org/10.12989/sss.2016.17.6.881
  5. Local dynamic characteristics of PZT impedance interface on tendon anchorage under prestress force variation vol.15, pp.2, 2015, https://doi.org/10.12989/sss.2015.15.2.375
  6. Development of a Multitype Wireless Sensor Network for the Large-Scale Structure of the National Stadium in China vol.9, pp.12, 2013, https://doi.org/10.1155/2013/709724
  7. Multiscale Acceleration-Dynamic Strain-Impedance Sensor System for Structural Health Monitoring vol.8, pp.10, 2012, https://doi.org/10.1155/2012/709208
  8. Feasibility Verification of Mountable PZT-Interface for Impedance Monitoring in Tendon-Anchorage vol.2015, 2015, https://doi.org/10.1155/2015/262975
  9. Wireless MEMS-Based Accelerometer Sensor Boards for Structural Vibration Monitoring: A Review vol.17, pp.2, 2017, https://doi.org/10.1109/JSEN.2016.2630008
  10. Substructural parameters and dynamic loading identification with limited observations vol.15, pp.1, 2015, https://doi.org/10.12989/sss.2015.15.1.169
  11. Smart sensing, monitoring, and damage detection for civil infrastructures vol.15, pp.1, 2011, https://doi.org/10.1007/s12205-011-0001-y
  12. Temperature-Compensated Damage Monitoring by Using Wireless Acceleration-Impedance Sensor Nodes in Steel Girder Connection vol.8, pp.9, 2012, https://doi.org/10.1155/2012/167120
  13. Multiscale Structural Health Monitoring of Cable-Anchorage System Using Piezoelectric PZT Sensors vol.9, pp.11, 2013, https://doi.org/10.1155/2013/254785
  14. Performance Evaluation of Imote2-Platformed Wireless Smart Sensor Node for Health Monitoring of Harbor Structures vol.23, pp.1, 2011, https://doi.org/10.9765/KSCOE.2011.23.1.026
  15. A wireless smart sensor network for automated monitoring of cable tension vol.23, pp.2, 2014, https://doi.org/10.1088/0964-1726/23/2/025006
  16. Development of a Customized Wireless Sensor System for Large-Scale Spatial Structures and Its Applications in Two Cases vol.16, pp.04, 2016, https://doi.org/10.1142/S0219455416400174
  17. Development of a High-Sensitivity Wireless Accelerometer for Structural Health Monitoring vol.18, pp.1, 2018, https://doi.org/10.3390/s18010262
  18. Vibration-based Structural Health Monitoring of Full-Scale Cable-Stayed Bridges Using Wireless Smart Sensors vol.12, pp.1, 2012, https://doi.org/10.9798/KOSHAM.2012.12.1.075
  19. Optimal Sensor Placement for Stay Cable Damage Identification of Cable-Stayed Bridge under Uncertainty vol.9, pp.12, 2013, https://doi.org/10.1155/2013/361594
  20. Temperature Effect on Impedance-based Damage Monitoring of Steel-Bolt Connection using Wireless Impedance Sensor Node vol.26, pp.1, 2012, https://doi.org/10.5574/KSOE.2012.26.1.027
  21. Wireless Impedance Sensor Node and Interface Washer for Damage Monitoring in Structural Connections vol.15, pp.6, 2012, https://doi.org/10.1260/1369-4332.15.6.871
  22. Quantification of temperature effect on impedance monitoring via PZT interface for prestressed tendon anchorage vol.26, pp.12, 2017, https://doi.org/10.1088/1361-665X/aa931b
  23. Vibration-based Damage Monitoring Scheme of Steel Girder Bolt-Connection Member by using Wireless Acceleration Sensor Node vol.25, pp.1, 2012, https://doi.org/10.7734/COSEIK.2012.25.1.081
  24. Development and Application of Structural Health Monitoring System Based on Piezoelectric Sensors vol.9, pp.11, 2013, https://doi.org/10.1155/2013/270927
  25. Damage Identification for Underground Structure Based on Frequency Response Function vol.18, pp.9, 2018, https://doi.org/10.3390/s18093033
  26. A multi-way data analysis approachfor structural health monitoring of a cable-stayed bridge pp.1741-3168, 2019, https://doi.org/10.1177/1475921718790727
  27. Experimental Verification of the Statistical Time-Series Methods for Diagnosing Wind Turbine Blades Damage pp.1793-6764, 2019, https://doi.org/10.1142/S021945541940008X
  28. Output-only modal identification approach for time-unsynchronized signals from decentralized wireless sensor network for linear structural systems vol.7, pp.1, 2011, https://doi.org/10.12989/sss.2011.7.1.059
  29. Hybrid acceleration-impedance sensor nodes on Imote2-platform for damage monitoring in steel girder connections vol.7, pp.5, 2010, https://doi.org/10.12989/sss.2011.7.5.393
  30. Solar-powered multi-scale sensor node on Imote2 platform for hybrid SHM in cable-stayed bridge vol.9, pp.2, 2010, https://doi.org/10.12989/sss.2012.9.2.145
  31. Smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection vol.9, pp.6, 2012, https://doi.org/10.12989/sss.2012.9.6.489
  32. Damage detection in beam-type structures via PZT's dual piezoelectric responses vol.11, pp.2, 2010, https://doi.org/10.12989/sss.2013.11.2.217
  33. Experimental investigation of magnetic-mount PZT-interface for impedance-based damage detection in steel girder connection vol.4, pp.3, 2017, https://doi.org/10.12989/smm.2017.4.3.237
  34. Advances and challenges in impedance-based structural health monitoring vol.4, pp.4, 2010, https://doi.org/10.12989/smm.2017.4.4.301
  35. PCA-based filtering of temperature effect on impedance monitoring in prestressed tendon anchorage vol.22, pp.1, 2018, https://doi.org/10.12989/sss.2018.22.1.057
  36. Preload Monitoring in Bolted Connection Using Piezoelectric-Based Smart Interface vol.18, pp.9, 2010, https://doi.org/10.3390/s18092766
  37. A multi-level 3D data registration approach for supporting reliable spatial change classification of single-pier bridges vol.38, pp.None, 2010, https://doi.org/10.1016/j.aei.2018.06.010
  38. Application of MEMS‐based accelerometer wireless sensor systems for monitoring of blast‐induced ground vibration and structural health: a review vol.9, pp.3, 2019, https://doi.org/10.1049/iet-wss.2018.5099
  39. Sensor Fault Diagnosis for Impedance Monitoring Using a Piezoelectric-Based Smart Interface Technique vol.20, pp.2, 2020, https://doi.org/10.3390/s20020510
  40. Understanding Impedance Response Characteristics of a Piezoelectric-Based Smart Interface Subjected to Functional Degradations vol.2021, pp.None, 2010, https://doi.org/10.1155/2021/5728679
  41. Numerical Simulation of Single-Point Mount PZT-Interface for Admittance-Based Anchor Force Monitoring vol.11, pp.11, 2010, https://doi.org/10.3390/buildings11110550