DOI QR코드

DOI QR Code

A study on the variation of in-plane and out-of-plane properties of T800 carbon/epoxy composites according to the forming pressure

성형 압력에 따른 T800 탄소섬유/에폭시 복합재료의 평면 내.외 물성 변화에 대한 연구

  • 박명길 (중앙대학교 기계공학부 대학원) ;
  • 조성겸 (중앙대학교 기계공학부 대학원) ;
  • 장승환 (중앙대학교 기계공학부)
  • Published : 2010.12.31

Abstract

In this paper, the variation of mechanical properties of T800 carbon/epoxy composites according to the forming pressure, which was referred to previous studies on a filament winding process, were investigated. The specimens of all the tests were fabricated by an autoclave de-gassing molding process controlling forming pressure (absolute pressures of 0.1MPa, 0.3MPa, 0.7MPa including vacuum) and water jet cutting after fabricating composite laminates. Various tensile tests were performed for in-plane properties and interlaminar properties were also measured by using Iosipescu test jig. Fiber volume fraction was measured to correlate the property variation and the forming pressure. This properties are expected to be utilized in the design of Type III pressure vessel for hydrogen vehicles which uses the same carbon fiber (T800 carbon fiber) for the filament winding process.

본 논문에서는 필라멘트 와인딩 시 장력에 의해 압밀을 유발하는 압력을 선행연구자들의 연구를 참조하여 결정한 후 T800 탄소섬유/에폭시 복합재료의 기본적인 물성과 성형압력 변화에 따른 면 내 외의 물성 변화를 측정하였다. 실험 시편은 오토클레이브 진공백 성형을 통해 압력(절대압력 0.1MPa, 0.3MPa, 0.7MPa)을 조절하여 제조되었다. 모든 시편은 적층판 형태로 정화된 후 워터젯을 이용하여 시편 모양으로 절단되었으며, 층간 전단시편의 V-노치는 밀링가공을 통하여 제작되었다. 평면 내 물성을 위해 다양한 인장실험이 실시되었으며, 평면 외 물성을 측정하기 위해 층간 전단 실험이 수행되었다 성형압력과 물성 변화를 관련시키기 위해 시편의 섬유 부피분율을 측정하였다. 본 연구에서 측정된 물성은 동일한 탄소섬유 (T800 탄소섬유)를 사용하여 필라멘트 와인딩 공정으로 제작되는 차량용 Type III 수소저장용기의 설계에 유용하게 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Lee D.G., Seo N.P., Axiomatic design and fabrication of composite structures, Oxford, 2006.
  2. 윤성오, 김준영, 황태경, "필라멘트 와인딩 복합재의 기계적 특성과 와인딩 시 공정변수와의 관계에 대한 실험적 고찰," 한국추진공학회지, 제3권, 제2호, 1999, pp. 56-65.
  3. Cai Z., Gutowski T., Allen S., "Winding and Consolidation Analysis for Cylindrical Composite Structures," Journal of Composite Materials, Vol. 26, No. 9, 1992, pp. 1374-1399. https://doi.org/10.1177/002199839202600908
  4. Cohen D., "Influence of filament winding parameters on composite vessel quality and strength," Composites Part A, Vol. 28, No. 12, 1997, pp. 1035-1037. https://doi.org/10.1016/S1359-835X(97)00073-0
  5. Banerjee A., Sun L., Mantell S.C., Cohen D., "Model and experimental study of fiber motion in wet filament winding," Composites Part A, Vol. 29, No. 3, 1998, pp. 251-263.
  6. Hahn H.T., Kempner E.A. Lee S.S., "The stress development during filament winding of thick cylinders," Composites Manufacturing, Vol. 4, No. 3, 1993, pp. 147-156. https://doi.org/10.1016/0956-7143(93)90099-T
  7. 이호성, "복합재료의 인증, 동등성 및 수락시험," 한국복합재료학회지, 제19권, 제2호, 2006, pp. 1-6.
  8. Pindera M.J., Herakovichs C.T., "Shear characterization of unidirectional composites with the off-axis tension test," Experimental mechanics, Vol. 26, No. 1, 1986, pp. 103-112. https://doi.org/10.1007/BF02319962
  9. Lee D.G., Kim S.S., "Failure analysis of asbestos-phenolic composite journal bearing," Composite Structures, Vol. 65, No. 1, 2004, pp. 37-46. https://doi.org/10.1016/j.compstruct.2003.10.004
  10. Jensen D.W., Koharchik M.J., "Calibration of composite-embedded fiber-optic strain sensors," Spring Conference on Experimental Mechanics, 1990, pp. 234-240.
  11. Chai H., "Bond thickness effect in adhesive joints and its significance for mode I interlaminar fracture of composites," Composite materials: testing and design (7th conference), 1986, pp. 209-231.
  12. Ojalvo I.U., Eidinoff H.L., "Bond thickness effects upon stresses in single lap adhesive joints," AIAA Journal, Vol.16, No. 3, 1977, pp. 204-211.
  13. Sela N., Ishai O., Banks-Sills L., "The effect of adhesive thickness on interlaminar fracture toughness of interleaved CFRP specimens," Composites, Vol. 20, No. 3, 1989, pp. 257-264. https://doi.org/10.1016/0010-4361(89)90341-8
  14. Bradley L.R., Bowen C.R., McEnaney B, Johnson DC, "Shear properties of a carbon/carbon composite with non-woven felt and continuous fibre reinforcement layers," Carbon, Vol. 45, No. 11, 2007, pp. 2178-2187. https://doi.org/10.1016/j.carbon.2007.06.072
  15. Zhou G., Green E.R., Morrison C., "In-plane and interlaminar shear properties of carbon/epoxy laminates," Composites science and technology, Vol. 55, No. 2, 1995, pp. 187-193. https://doi.org/10.1016/0266-3538(95)00100-X

Cited by

  1. A study on the bonding strength of co-cured T800/epoxy composite–aluminum single-lap joint under out-of-plane compressive pressure condition vol.21, pp.5-6, 2012, https://doi.org/10.1080/09243046.2012.736353
  2. Finite Element Analysis for Performance Evaluation of Type III Hydrogen Pressure Vessel for the Clean Tech Fuel Cell Vehicles vol.29, pp.9, 2012, https://doi.org/10.7736/KSPE.2012.29.9.938
  3. Study on the Interfacial Strength of Carbon Fiber-Polymer Film Composite by Lap Shear Test Method vol.27, pp.6, 2010, https://doi.org/10.7467/ksae.2019.27.6.455