DOI QR코드

DOI QR Code

Control Effect of a Stored Grain Insect Pest, Tribolium castaneum, by 'CATTS' Postharvest Treatment

CATTS를 이용한 저곡해충 거짓쌀도둑거저리(Tribolium castaneum)의 소독 효과

  • Son, Ye-Rim (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Yong (Digital-Solution, Inc.) ;
  • Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University)
  • 손예림 (안동대학교 생명자원과학과) ;
  • 김용 ((주)디지탈솔루션) ;
  • 김용균 (안동대학교 생명자원과학과)
  • Received : 2010.10.20
  • Accepted : 2010.12.15
  • Published : 2010.12.30

Abstract

A postharvest treatment called CATTS (controlled atmosphere and temperature treatment system) has been used as an alternative nonchemical measure for methyl bromide fumigant treatment. This study applied CATTS to control the red flour beetle, Tribolium castaneum, infesting stored grains. Adults of T. castaneum were susceptible to $46^{\circ}C$ heat treatment. The susceptibility was further enhanced by addition of CA conditions (15% $CO_2$ and 1% $O_2$). When CATTS ($46^{\circ}C$, 15% $CO_2$, $16^{\circ}C/h$ treating rate) was applied to different developmental stages of T. castaneum, it showed 100% control efficacy by 120 min exposure. There was a variation in CATTS susceptibility among developmental stages, in which late instar larvae were most tolerant. Heat shock proteins of T. castaneum appeared to be implicated in the tolerance of CATTS.

친환경 소독 기술인 환경조절열처리(CATTS: controlled atmosphere and temperature treatment system)는 메틸브로마이드 훈증제 처리의 대체 기술로 사용되어 왔다. 본 연구는 저장 곡물 해충인 거짓쌀도둑거저리(Tribolium castaneum)를 CATTS를 통해 저장 기간 중 방제가 가능한 지를 알아보기 위해 시도되었다. 거짓쌀도둑거저리의 성충은 $46^{\circ}C$에서 열충격 감수성을 보였으며 여기에 CA 조건(15% 이산화탄소, 1% 산소)은 감수성을 현격하게 증가시켰다. CATTS 조건($46^{\circ}C$, 15% 이산화탄소 1% 산소)에서 120 분간 노출시켰을 때 유충(초기, 중기, 말기)과 성충 모두 100% 살충율을 나타냈다. CATTS 처리에 대한 감수성이 거짓쌀도둑거저리 발육 시기에 띠라 상이했고 말기 유충에서 높은 내성을 보였다. 거젓쌀도둑거저리 열충격단백질의 발현이 CATTS에 대한 내생과 관련이 있는 것으로 나타났다.

Keywords

References

  1. Butz, P. and B. Tauscher. 1995. Inactivation of fruit fly eggs by high pressure treatment. J. Food Process. Preserv. 19: 161-164. https://doi.org/10.1111/j.1745-4549.1995.tb00285.x
  2. Birch, L.C. 1945. The influence of temperature on the development of the different sages of Calandra ortzae and Rhizopertha dominica. Aust. J. Exp. Med. Sci. 23: 29-35. https://doi.org/10.1038/icb.1945.5
  3. Carpenter, A. and M. Potter. 1994. Controlled atmospheres. pp. 171-198, In Quarantine treatments for pests and food plants, eds. by J.L. Sharp and G.J. Hallman. 290pp. Westview, Boulder, CO, USA.
  4. Choi, G., M. Lee, M. Han, S. An and G. Hong. 1996. Stored product insect pests with pictorial key to larvae. NIAST: 192-193.
  5. Daniels, N.E. 1956. Damage and reproduction by the flour beetles, Tribolium confusum and T. castaneum in wheat at three moistures. J. Econ. Entomol. 49: 244-247. https://doi.org/10.1093/jee/49.2.244
  6. Gething, M. 1998. Guidebook to molecular chaperones and protein folding catalysts. Oxford University Press, Oxford, UK.
  7. Hartl, F.U. 1996. Molecular chaperones in cellular protein folding. Nature 381: 571-580. https://doi.org/10.1038/381571a0
  8. Hollingsworth, R.G., and J.W. Armstrong. 2005. Potential of temperature, controlled atmospheres, and ozone fumigation to control thrips and mealybugs on ornamental plants for export. J. Econ. Entomol. 98: 289-298. https://doi.org/10.1603/0022-0493-98.2.289
  9. Ikediala, J.N., J. Tang, L.G. Neven and S.R. Drake. 1999. Quarantine treatment of cherries using 915 MHz microwaves: temperature mapping, codling moth mortality and fruit quality. Postharvest Biol. Technol. 16: 127-137. https://doi.org/10.1016/S0925-5214(99)00018-6
  10. Kells, S.A., L.J. Mason, D.E. Maier and C.P. Woloshuck. 2001. Efficacy and fumigation characteristics of ozone in stored maize. J. Stored Prod. Res. 37: 371-383. https://doi.org/10.1016/S0022-474X(00)00040-0
  11. Kim, Y. and M. Ryoo. 1982. Activities of molds and insects during rice storage - Part II. Activities of rice weevil (Sitophilus oryzae L.) and Aspergillus species. J. Kor. Appl. Biol. Chem. 25: 252-256.
  12. Le Cato, G.L. and B.R. Flaherty. 1973. Tribolium castaneum progeny production and development on diet supplemented with egg of adult of Plodia interpunctella. J. Stored Prod. Res. 9: 119-203. https://doi.org/10.1016/0022-474X(73)90019-2
  13. Liu, Y.B. 2003. Effects of vacuum and controlled atmosphere treatments on insect mortality and lettuce quality. J. Econ. Entomol. 96: 1100-1107. https://doi.org/10.1603/0022-0493-96.4.1100
  14. Mahroof, R., K.Y. Zhu, L.G. Neven, B. Subramanyam and J. Bai. 2005. Expression patterns of three heat shock protein 70 genes among developmental stages of the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). Comp. Biochem. Physiol. 141: 247-256. https://doi.org/10.1016/j.cbpb.2005.05.044
  15. Na, J., Y. Nam, M. Ryoo and Y. Chun. 2006. Control of food pests by $CO_2$ modified atmosphere: effects of packing materials and exposure time on the mortality of Tribolium castaneum and Plodia interpunctella. Kor. J. Appl. Entomol. 45: 363-369.
  16. Na, J. and M. Ryoo. 2000. The influence of temperature on development of Plodia interpunctella (Lepidoptera: Pyralidae) on dried vegetable commodities. J. Stored Prod. Res. 36: 125-129. https://doi.org/10.1016/S0022-474X(99)00039-9
  17. Nelson, S.O. 1996. Review and assessment of radio-frequency and microwave energy for stored-grain insect control. Trans. ASAE 39: 1475-1484. https://doi.org/10.13031/2013.27641
  18. Neven, L.G. 1998. Effects of heating rate on the mortality of fifth-instar codling moth (Lepidoptera: Tortricidae). J. Econ. Entomol. 91, 297-301. https://doi.org/10.1093/jee/91.1.297
  19. Neven, L.G. 2000. Physiological responses of insects to heat. Postharvest Biol. Technol. 21: 103-111. https://doi.org/10.1016/S0925-5214(00)00169-1
  20. Neven, L.G. 2005. Combined heat and controlled atmosphere quarantine treatments for control of codling moth, Cydia pomonella, in sweet cherries. J. Econ. Entomol. 98: 709-715. https://doi.org/10.1603/0022-0493-98.3.709
  21. Neven, L.G. and S.R. Drake. 2000. Comparison of alternative quarantine treatments for sweet cherries. Postharvest Biol. Technol. 20: 107-114. https://doi.org/10.1016/S0925-5214(00)00110-1
  22. Neven, L.G. and E.J. Mitcham. 1996. CATTS: controlled atmosphere temperature treatment system, a novel approach to the development of quarantine treatments. Am. Entomol. 42: 56-59. https://doi.org/10.1093/ae/42.1.56
  23. Neven, L.G. and L. Rehfield-Ray. 2006a. Combined heat and controlled atmosphere quarantine treatments for control of western cherry fruit fly in sweet cherries. J. Econ. Entomol. 99: 658-663. https://doi.org/10.1603/0022-0493-99.3.658
  24. Neven, L.G. and L. Rehfield-Ray. 2006b. Confirmation and efficacy test against codling moth and oriental fruit moth in apples using combination heat and controlled atmosphere treatments. J. Econ. Entomol. 99: 1620-1627. https://doi.org/10.1603/0022-0493-99.5.1620
  25. Neven, L.G., L. Rehfield-Ray and D. Obenland. 2006. Confirmation and efficacy tests against codling moth and oriental fruit moth in peaches and nectarines using combination heat and controlled atmosphere treatments. J. Econ. Entomol. 99: 1610-1619. https://doi.org/10.1603/0022-0493-99.5.1610
  26. Nover. L. and K.D. Scharf. 1997. Heat stress proteins and transcription factors. Cell Mol. Life Sci. 53: 80-103. https://doi.org/10.1007/PL00000583
  27. Obenland, D., P. Neipp, B. Mackey and L.G. Neven. 2005. Peach and nectarine quality following treatment with high temperature forced air combined with controlled atmospheres. HortScience 40: 1425-1430.
  28. Paull, R.E. and J.W. Armstrong. 1994. Insect pests and fresh horticultural products: treatments and responses. CAB International, Wallingford, UK.
  29. Raymond, M. 1985. Presentation d'un programme d'analyse log-probit pour micro-ordinateur. Cah. ORS-TOM. Ser. Ent. Med. et Parasitol. 22: 117-121.
  30. Rooder, F.A. and G.G.M. Andri-Essen. 1983. Laboratory observations on the development of Tribolium castaneum (Coleoptera: Tenebrionidae) on millet at different temperature and relative humidities. Z. Angew. Entomol. 93: 446-452.
  31. SAS Institute, Inc. 1989. SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C.
  32. Sharp, J.L. and G.J. Hallman. 1994. Quarantine treatments for pests and food plants. Westview, Boulder, CO, USA.
  33. Shazali, M.E.H., and R.H. Smith. 1986. Life history studies of externally feeding pest of stored sorghum: Corcyra cephalonica and Tribolium castaneum. J. Stored Prod. Res. 22: 55-62. https://doi.org/10.1016/0022-474X(86)90019-6
  34. Son, Y., K. Choi, Y. Kim and Y. Kim. 2010. Applicability of CATTS as a postharvest phytosanitation technology against the peach fruit moth, Carposina sasakii Matsumura. Kor. J. Appl. Entomol. 49: 37-42. https://doi.org/10.5656/KSAE.2010.49.1.037
  35. Tang, J., J.N. Ikediala, S. Wang, J.D. Hansen and R.P. Cavalieri. 2000. High-temperature short-time thermal quarantine methods. Postharvest Biol. Technol. 21: 129-145. https://doi.org/10.1016/S0925-5214(00)00171-X
  36. Yahia, E.M. 2000. The mortality of artificially infested third instar larvae of Anastrepha ludens and A. obliqua in mango fruit with insecticidal controlled atmospheres at high temperatures. Acta Hort. 509: 833-839.
  37. Yin, X., S. Wang, J. Tang, J.D. Hansen and S. Lurie. 2006. Thermal conditioning of fifth-instar Cydia pomonella (Lepidoptera: Tortricidae) affects HSP70 accumulation and insect mortality. Physiol. Entomol. 31: 241-247. https://doi.org/10.1111/j.1365-3032.2006.00512.x
  38. Wang, S., J. Tang, J.A. Johnson, E. Micham and J.D. Hansen. 2002. Process protocols based on radio frequency energy to control field and storage pests in inshell walnuts. Postharvest Biol. Technol. 26: 265-273. https://doi.org/10.1016/S0925-5214(02)00048-0

Cited by

  1. Evasive Behavior of the Red Flour Beetle, Tribolium castaneum, against Chlorine Dioxide and Its Suppression by Heat Treatment vol.54, pp.3, 2015, https://doi.org/10.5656/KSAE.2015.05.0.021
  2. Insecticidal activity of chlorine dioxide gas by inducing an oxidative stress to the red flour beetle, Tribolium castaneum vol.64, 2015, https://doi.org/10.1016/j.jspr.2015.09.001
  3. Control Efficacy of Controlled Atmosphere and Temperature Treatment System Against the Hawthorn Spider Mite, Tetranychus viennensis vol.51, pp.2, 2012, https://doi.org/10.5656/KSAE.2012.04.0.08