The Optimization of IEEE 802.15.4 PHY/MAC with Hardwired Low-MAC

Hardwired Low-MAC 기능을 이용한 IEEE 802.15.4 PHY/MAC 프로토콜 최적화

  • 황태호 (전자부품연구원 멀티미디어IP 연구센터) ;
  • 김동순 (전자부품연구원 멀티미디어IP 연구센터) ;
  • 원광호 (전자부품연구원 u임베디드연구센터)
  • Published : 2010.01.31

Abstract

IEEE 802.15.4 is the one of the protocols for radio communication in a personal area network. Since it aims to provide low cost and low power communication for ubiquitous communication, it requires high level of optimization in implementation. Recently, there have been many studies on the performance evaluation of IEEE 802.15.4 MAC protocol. According to the results of the studies, it is tendency that the transceiver is implemented to SoC type. On the implementation, the specific functions of MAC like CSMA-CA and MAC frame handling is designed to hardwired functions. In this paper, we implemented the protocol with hardwired low MAC (HL-MAC) and its state machine for the optimization from the physical layer and MAC layer. it has the characteristics of the small code size and the enhanced power consumption.

IEEE 802.15.4는 물리 계층(PHY)과 매체 접근 계층(MAC)을 정의하는 표준으로서, 저속도 무선 개인 통신망(Low Rate Wireless Personal Area Networks, LR-WPANs)을 위한 표준 중 하나이다. IEEE 802.15.4 프로토콜은 장치간의 저가격, 저속도 유비쿼터스 통신을 지향하기 때문에 PHY/MAC의 구현에 있어서 고도화된 최적화가 중요한 요구사항이라 할 수 있다. 최근 IEEE 802.15.4 MAC 프로토콜의 성능 분석에 대한 많은 연구가 진행되었으며, 이를 반영하여 송수신기는 가격 및 성능의 장점이 있는 SoC로 구현되는 추세이다. 이러한 구현 과정에서 CSMA-CA 및 MAC 프레임의 처리와 같은 표준에서 명시한 MAC의 세부 기능들은 성능의 향상을 위해 하드웨어 지향의 Low-MAC과 이를 이용한 소프트웨어 기반의 상위 MAC으로 구현된다. 본 논문은 IEEE 802.15.4 LR-WPAN의 물리계층과 매체 접근 계층 간의 최적화를 위해 Hardwired Low-MAC (HL-MAC)과 상태 기계 (State Machine)를 통해 작은 코드 사이즈와 향상된 에너지 효율을 갖는 최적화 프로토콜을 구현방법을 제안하고자 한다.

Keywords

References

  1. IEEE Std 802.15.4-2006, IEEE Standard for Information technology –. Telecommunications and information exchange between systems –. Local metropolitan area networks –. Specific requirements, Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs), 2006.3
  2. G. Lu, B. Krishnamachari, and C. S. Raghavendra, "Performance evaluation of the IEEE 802.15.4 MAC for low-rate low-power wireless networks," in Proc. Workshop EWCN, pp. 701–706, Apr. 2004.
  3. B. Bougard, F. Catthoor, D. C. Daly, A. Chandrakasan, and W. Dehaene, "Energy efficiency of the IEEE 802.15.4 standard in dense wireless microsensor networks: Modeling and improvement perspectives," in Proc. Des. Autom. Test Eur., pp.196–201, Mar. 2005.
  4. J.-S. Lee, "An experiment on performance study of IEEE 802.15.4 wirelessnetworks," in Proc. IEEE Conf. ETFA, pp.458–466, Sep. 2005.
  5. A. Kouba, A. Cunha, and M. Alves, "A time division beacon scheduling mechanism for IEEE 802.15.4/zigbee cluster-tree wireless sensor networks," in Proc. 20th Euromicro Conf. Real-Time Syst. ETFA, pp.125–135, Jul. 2007.
  6. A. Koubaa, M. Alves, and E. Tovar, "A comprehensive simulation study of slotted CSMA/CA for IEEE 802.15.4 wireless sensor networks," in Proc. IEEE Int. WFCS, pp. 183–192, Jun. 2006.
  7. T. O. Kim, H. Kim, J. Lee, J. S. Park, and B. D. Choi, "Performance analysis of the IEEE 802.15.4 with non beacon-enabled CSMA/CA in nonsaturated condition," in Proc. Int. Conf. EUC, pp.884–893, Aug. 2006.
  8. Lo Bello, L.; Toscano, E., "Coexistence Issues of Multiple Co-Located IEEE 802.15.4/ZigBee Networks Running on Adjacent Radio Channels in Industrial Environments", Industrial Informatics, IEEE Transactions on Volume 5, Issue 2, pp.157-167, May 2009. https://doi.org/10.1109/TII.2009.2018541
  9. S. Shin, et al, "Packet error rate analysis of IEEE IEEE 802.15.4 under between IEEE 802.15.4 and IEEE 802.11b interference," Proc. WWIC'05, pp.279-288
  10. TI, "CC2420 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver," http://www.chipcon.com.
  11. S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C. Gruenwald, A. Torgerson, R. Han, "MANTIS OS: An Embedded Multithreaded Operating System for Wireless Micro Sensor Platforms", ACM/Kluwer Mobile Networks & Applications (MONET). Special Issue on Wireless Sensor Networks Vol. 10. No. 4, 2005, pp. 563-579. https://doi.org/10.1007/s11036-005-1567-8
  12. A. Mainwaring, J.Polastre, R. Szewczyk, D. Culler, J. Anderson, "Wireless Sensor Networks for Habitat Monitoring", First ACM Workshop on Wireless Sensor Networks and applications, 2002, pp.88-97.
  13. uCOS-II, http://www.micrium.com/