DOI QR코드

DOI QR Code

A Study on the Structure of Neural Network for Predicting Defect Size of Steam Generator Tube in Nuclear Power Plant

원전SG 세관 결함크기 예측을 위한 신경회로망 구조에 관한 연구

  • 조남훈 (숭실대학교 전기공학부)
  • Published : 2010.01.31

Abstract

In this paper, we study the structure of neural network for predicting defect size of steam generator tube. After extracting the features from the eddy current testing (ECT) signals, multi-layer neural networks are used to predict the defect size. In order to maximize the prediction performance for the defect size, we should carefully choose the structure of neural networks, especially the number of neurons in the hidden layer. In this paper, it is shown that, for the prediction of defect size, the number of neurons in the hidden layer can be efficiently determined by using cross-validation.

본 논문에서는 원자력발전소 증기세관 크기 예측을 위한 신경회로망 구조에 대해서 연구한다. 와류탐상 시험(ECT) 신호로부터 특징을 추출한 후, 결함크기 예측을 위해서 다층퍼셉트론 신경회로망을 이용한다. 결함크기 예측성능을 최대화하기 위해서는 신경회로망의 구조, 특히 은닉층 내의 뉴런의 개수를 신중히 결정하여야 한다. 본 논문에서는, 결함크기 예측을 위한 은닉층 내의 뉴런의 개수를 교차검증을 이용하여 매우 효과적으로 결정할 수 있음을 보인다.

Keywords

References

  1. G. Chen, A. Yamaguchi, K. Miya, “A novel signal processing technique for eddy-current testing of steam generator tubes,” IEEE Trans. Magnetics, Vol. 34, No. 3, pp. 642-648, 1998. https://doi.org/10.1109/20.668059
  2. P. Xiang, S. Ramakrishnan, X. Cai, P. Ramuhalli, R. Polikar, S.S. Udpa, L. Udpa, “Automated analysis of rotating probe multi-frequency eddy current data from steam generator tubes,” International Journal of Applied Electromagnetics and Mechanics, Vol. 12, pp. 151-164, 2000.
  3. M. Das, H. Shekhar, X. Liu, R. Polikar, P. Ramuhalli, L. Udpa, S. Udpa, “A generalized likelihood ratio technique for automated analysis of bobbin coil eddy current data,” NDT & E International, Vol. 35, pp. 329-336, 2002. https://doi.org/10.1016/S0963-8695(01)00055-X
  4. H. Haoyu, T. Takagi, “Inverse analyses for natural and multicracks using signals from a differential transmitreceive ECT probe,” IEEE Trans. Magnetics, Vol. 38, No. 2, pp. 1009-1012, 2002. https://doi.org/10.1109/20.996259
  5. S.J. Song and Y.K. Shin, “Eddy current Flaw characterization in tubes by neural networks and finite element modeling,” NDT & E International, Vol. 33, pp. 233-243, 2000. https://doi.org/10.1016/S0963-8695(99)00046-8
  6. H. Haoyu, and T. Takagi, “Inverse analyses for natural and multicracks using signals from a differential transmitreceive ECT probe,” IEEE Trans. Magnetics, Vol. 38, No. 2, part 1, pp. 1009-1012, 2002. https://doi.org/10.1109/20.996259
  7. M. Rebican, N. Yusa, Z. Chen, K. Miya, T. Uchimoto, and T. Takagi, “Reconstruction of multiple cracks in an ECT round-robin test,” International Journal of Applied Electromagnetics and Mechanics, Vol. 19, No. 1-4, pp. 399-404, 2004.
  8. 조남훈, 이향범, 한기원, 송성진 “신경회로망을 이용한 원전SG 세관 결함패턴 분류성능 향상기법,” 전기학회 논문지 , Vol. 56, No. 7, pp. 1224 - 1230, July, 2007.
  9. S. Haykin, Neural Networks, New Jersey: Prentice -Hall, 1999.
  10. C. Schaffer, “Selecting a Classification Method by Cross-Validation,” Machine Learning, Vol. 13, pp. 135-143, 1993. https://doi.org/10.1007/BF00993106