DOI QR코드

DOI QR Code

Heterologous Production of Streptokinase in Secretory Form in Streptomyces lividans and in Nonsecretory Form in Escherichia coli

  • Published : 2010.01.31

Abstract

The skc gene encoding streptokinase (SK) with a molecular mass of approximately 47.4 kDa was cloned from Streptococcus equisimilis ATCC 9542 and heterologously overexpressed in Streptomyces lividans TK24 and E. coli using various strong promoters. When the promoter for sprT [Streptomyces griseus trypsin (SGT)] was used in the host S. lividans TK24, a 47.4-kDa protein was detected along with a smaller hydrolyzed protein (44 kDa), suggesting that posttranslational hydrolysis had occurred as has been reported in other expression systems. The casein/plasminogen plate assay revealed that the plasmid construct containing the SGT signal peptide was superior to that containing the SK signal peptide in terms of SK production. Maximal production of SK was calculated to be about 0.25 unit/ml of culture broth, a value that was five times higher than that obtained with other expression systems using ermE and tipA promoters in the same host. When the skc gene was expressed in E. coli BL21(${\Delta}DE3$)pLys under the control of the T7 promoter, a relatively large amount of SK was expressed in soluble form without hydrolysis. SK activity in E. coli/pET28a-$T7_pSK_m$ was more than 2 units/ml of culture broth, even though about half of the expressed protein formed an inactive inclusion body.

Keywords

References

  1. Boyle, M. D. and R. Lottenberg. 1997. Plasminogen activation by invasive human pathogens. Thromb. Haemost. 77: 1-10.
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Castellino, F. J., J. M. Sodetz, W. J. Brockway, and G. E. Siefring Jr. 1976. Streptokinase. Methods Enzymol. 45: 244-257. https://doi.org/10.1016/S0076-6879(76)45024-3
  4. Cherish Babu, P. V., V. K. Srinivas, V. Krishna Mohan, and E. Krishna. 2008. Renaturation, purification and characterization of streptokinase expressed as inclusion body in recombinant E. coli. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 861: 218-226. https://doi.org/10.1016/j.jchromb.2007.10.008
  5. Chi, W. J., M. S. Kim, J. H. Kim, D. K. Kang, and S. K. Hong. 2005. Molecular cloning and analysis of the genes in the vicinity of Streptomyces griseus trypsin (SGT) gene from Streptomyces griseus ATCC10137. Korean J. Microbiol. 41: 255-261.
  6. Christen, E. H., M. Karlsson, M. M. Kampf, C. C. Weber, M. Fussenegger, and W. Weber. 2009. A general strategy for the production of difficult-to-express inducer-dependent bacterial repressor proteins in Escherichia coli. Protein Expr. Purif. 66: 158-164. https://doi.org/10.1016/j.pep.2009.03.007
  7. Doumith, M., P. Weingarten, U. F. Wehmeier, K. Salah-Bey, B. Benhamou, C. Capdevila, J. M. Michel, W. Piepersberg, and M. C. Raynal. 2000. Analysis of genes involved in 6-deoxyhexose biosynthesis and transfer in Saccharopolyspora erythraea. Mol. Gen. Genet. 264: 477-485. https://doi.org/10.1007/s004380000329
  8. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580. https://doi.org/10.1016/S0022-2836(83)80284-8
  9. Jackson, K. W. and J. Tang. 1982. Complete amino acid sequence of streptokinase and its homology with serine proteases. Biochemistry 21: 6620-6625. https://doi.org/10.1021/bi00269a001
  10. Jackson, K. W., H. Malke, D. Gerlach, J. J. Ferretti, and J. Tang. 1986. Active streptokinase from the cloned gene in Streptococcus sanguis is without the carboxy terminal 32 residues. Biochemistry 25: 108-114. https://doi.org/10.1021/bi00349a016
  11. Kato, J. Y., W. J. Chi, Y. Ohnishi, S. K. Hong, and S. Horinouchi. 2005. Transcriptional control by A-factor of two trypsin genes in Streptomyces griseus. J. Bacteriol. 187: 286-295. https://doi.org/10.1128/JB.187.1.286-295.2005
  12. Kieser, H., M. J. Bibb, M. J. Buttner, F. K. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, U.K.
  13. Klessen, C. and H. Malke. 1986. Expression of streptokinase gene from Streptococcus equisimilis in Bacillus subtilis. J. Basic Microbiol. 26: 75-81. https://doi.org/10.1002/jobm.3620260203
  14. Ko, J. H., D. K. Park, C. Kim, S. H. Lee, and S. M. Byun. 1995. High-level expression and secretion of streptokinase in Escherichia coli. Biotechnol. Lett. 17: 1019-1024. https://doi.org/10.1007/BF00143093
  15. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  16. Laplace, F., J. Muller, J. Gumpert, and H. Malke. 1989. Novel shuttle vectors for improved streptokinase expression in streptococci and bacterial L-forms. FEMS Microbiol. Lett. 65: 89-94. https://doi.org/10.1111/j.1574-6968.1989.tb03602.x
  17. Malke, H. and J. J. Ferretti. 1987. Streptokinase: Cloning, expression and excretion by Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 81: 3357-3561.
  18. Oh, E. A., M.-S. Kim, W.-J. Chi, J.-H. Kim, and S.-K. Hong. 2007. Characterization of the sgtR1 and sgtR2 genes and their role in regulating expression of the sprT gene encoding Streptomyces griseus trypsin. FEMS Microbiol. Lett. 276: 75-82. https://doi.org/10.1111/j.1574-6968.2007.00907.x
  19. Okanishi, M., K. Suzuki, and H. Umezawa. 1974. Formation and reversion of streptomycete protoplasts: Cultural conditions and morphological study. J. Gen. Microbiol. 80: 389-400. https://doi.org/10.1099/00221287-80-2-389
  20. Pimienta, H., J. C. Ayala, C. Rodriguez, A. Ramos, L. Van Mellaert, C. Vallin, and J. Anne. 2007. Recombinant production of Streptococcus equisimilis streptokinase by Streptomyces lividans. Microb. Cell Fact. 6: 20. https://doi.org/10.1186/1475-2859-6-20
  21. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  22. Schick, L. A. and F. J. Castellino. 1974. Direct evidence for the generation of an active site in the plasminogen moiety of the streptokinase-human plasminogen activator complex. Biochem. Biophys. Res. Commun. 57: 47-54. https://doi.org/10.1016/S0006-291X(74)80355-4
  23. Sriraman, K. and G. Jayaraman. 2006. Enhancement of recombinant streptokinase production in Lactococcus lactis by suppression of acid tolerance response. Appl. Microbiol. Biotechnol. 72: 1202-1209. https://doi.org/10.1007/s00253-006-0410-x
  24. Takano, E., J. White, C. J. Thompson, and M. J. Bibb. 1995. Construction of thiostrepton-inducible, high-copy-number expression vectors for use in Streptomyces spp. Gene 166: 133-137. https://doi.org/10.1016/0378-1119(95)00545-2
  25. Yang, H. Y., S. S. Choi, W. J. Chi, J. H. Kim, D. K. Kang, J. Chun, S. S. Kang, and S. K. Hong. 2005. Identification of the sprU gene encoding an additional sprT homologous trypsin-type protease in Streptomyces griseus. J. Microbiol. Biotechnol. 15: 1125-1129.

Cited by

  1. Enhancement of Protein Secretion by TatAC Overexpression in Streptomyces griseus vol.16, pp.1, 2010, https://doi.org/10.1007/s12257-010-0382-7
  2. Pitfalls in screening streptococci for retrieving superior streptokinase (SK) genes: no activity correlation for streptococcal culture supernatant and recombinant SK vol.40, pp.1, 2013, https://doi.org/10.1007/s10295-012-1205-y
  3. Highly Effective Renaturation of a Streptokinase from Streptococcus pyogenes DT7 as Inclusion Bodies Overexpressed in Escherichia coli vol.2014, pp.None, 2010, https://doi.org/10.1155/2014/324705
  4. Streptomyces as Microbial Chassis for Heterologous Protein Expression vol.9, pp.None, 2010, https://doi.org/10.3389/fbioe.2021.804295