DOI QR코드

DOI QR Code

Enhancement of Ornithine Production in Proline-Supplemented Corynebacterium glutamicum by Ornithine Cyclodeaminase

  • Lee, Soo-Youn (Department of Bioprocess Engineering, Chonbuk National University) ;
  • Cho, Jae-Yong (Division of Animal Science and Biotechnology, Sangji University) ;
  • Lee, Hyun-Jeong (Graduate School of Semiconductor and Chemical Engineering, Chonbuk National University) ;
  • Kim, Yang-Hoon (School of Life Science, Chungbuk National University) ;
  • Min, Ji-Ho (Department of Bioprocess Engineering, Chonbuk National University)
  • Published : 2010.01.31

Abstract

In this study, Corynebacterium glutamicum and its derived mutants were used to demonstrate the relationship between proline, glutamate, and ornithine. The maximum ornithine production was shown in the culture medium (3,295.0 mg/l) when the cells were cultured with 20 mM proline, and was 15.5 times higher than in the presence of 1 mM proline. However, glutamate, which is known as an intermediate in the process of converting proline to ornithine, did not have any positive effect on ornithine production. This suggests that the conversion of proline to ornithine through glutamate, is not possible in C. glutamicum. Comparative analysis between the wild-type strain, SJC 8043 ($argF^-$, $argR^-$), and SJC 8064 ($argF^-$, $argR^-$, and $ocd^-$), showed that C glutamicum could regulate ornithine production by ornithine cyclodeaminase (Ocd) under proline-supplemented conditions. Therefore, proline directly caused an increase in the endogenous level of ornithine by Ocd, which would be a primary metabolite in the ornithine biosynthesis pathway.

Keywords

References

  1. Alam, S., S. C. Wang, F. J. Ruzicka, P. A. Frey, and J. E. Wedekind. 2004. Crystallization and X-ray diffraction analysis of ornithine cyclodeaminase from Pseudomonas putida. Acta Crystallogr. D Biol. Crystallogr. 60: 941-944. https://doi.org/10.1107/S0907444904005256
  2. Amund, O. O., G. Mackinnon, and I. J. Higgins. 1983. Increased $_L$-ornithine production by an arg mutant of Acinetobacter lwoffi. Eur. Appl. Microbiol. Biotechnol. 17: 252-253. https://doi.org/10.1007/BF00510425
  3. Chinard, F. P. 1952. Photometric estimation of proline and ornithine. J. Biol. Chem. 199: 91-95.
  4. Chinen, A., Y. I. Kozlov, Y. Hara, H. Izui, and H. Yasueda. 2007. Innovative metabolic pathway design for efficient $_L$-glutamate production by suppressing $CO_2$ emission. J. Biosci. Bioeng. 103: 262-269. https://doi.org/10.1263/jbb.103.262
  5. Cunin, R., N. Glansdorff, A. Pierar, and V. Stalon. 1986. Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 50: 314-352.
  6. Dessaux, Y., A. Petit, J. Tempe, M. Demarez, C. Legrain, and J. M. Wiame. 1986. Arginine catabolism in Agrobacterium strains: Role of the Ti plasmid. J. Bacteriol. 166: 44-50.
  7. Goodman, J. L., S. Wang, S. Alam, F. J. Ruzicka, P. A. Frey, and J. E. Wedekind. 2004. Ornithine cyclodeaminase: Structure, mechanism of action, and implications for the $\mu$-crystallin family. Biochemistry 43: 13883-13891. https://doi.org/10.1021/bi048207i
  8. Gourdon, P. and N. D. Lindley. 1999. Metabolic analysis of glutamate production by Corynebacterium glutamicum. Metab. Eng. 1: 224-231. https://doi.org/10.1006/mben.1999.0122
  9. Hayashi, M., J. Ohnishi, S. Mitsuhashi, Y. Yonetani, S. Hashimoto, and M. Ikeda. 2006. Transcriptome analysis reveals global expression changes in an industrial $_$-lysine producer of Corynebacterium glutamicum. Biosci. Biotechnol. Biochem. 70: 546-550. https://doi.org/10.1271/bbb.70.546
  10. Hermann, T. 2003. Industrial production of amino acids by coryneform bacteria. J. Biotechnol. 104: 155-172. https://doi.org/10.1016/S0168-1656(03)00149-4
  11. Hwang, J.-H., G.-H. Hwang, and J.-Y. Cho. 2008. Effect of increased glutamate availability on $_L$-ornithine production in Corynebacterium glutamicum. J. Microbiol. Biotechnol. 18: 704-710.
  12. Inui, M., S. Murakami, S. Okino, H. Kawaguchi, A. A. Wertes, and H. Yukawa. 2004. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate production under oxygen deprivation conditions. J. Mol. Microbiol. Biotechnol. 7: 182-196. https://doi.org/10.1159/000079827
  13. Jiang, H., L. Shang, S. H. Yoon, S. Y. Lee, and Z. Yu. 2006. Optimal production of poly-$\gamma$-glutamic acid by metabolically engineered Escherichia coli. Biotechnol. Lett. 28: 1242-1246.
  14. Lee, H.-W., S.-J. Yoon, H.-W. Jang, C. Kim, T. Kim, W. Ryu, J. Jung, and Y. Park. 2000. Effects of mixing on fed-batch fermentation on L-ornithine. J. Biosci. Bioeng. 89: 539-544. https://doi.org/10.1016/S1389-1723(00)80053-5
  15. Lee, Y.-J. and J.-Y. Cho. 2006. Genetic manipulation of a primary metabolic pathway for L-ornithine production in Escherichia coli. Biotechnol. Lett. 28: 1849-1856. https://doi.org/10.1007/s10529-006-9163-y
  16. Lu, C. D. 2006. Pathways and regulation of bacterial arginine metabolism and perspectives for obtaining arginine overproducing strains. Appl. Microbiol. Biotechnol. 70: 261-272. https://doi.org/10.1007/s00253-005-0308-z
  17. Maas, W. K. 1994. The arginine repressor of Escherichia coli. Microbiol. Rev. 58: 631-640.
  18. Muro-Pastor, A. M., P. Ostrovsky, and S. Maloy. 1997. Regulation of gene expression by repressor localization: Biochemical evidence that membrane and DNA binding by PutA protein are mutually exclusive. J. Bacteriol. 179: 2788-2791.
  19. Okino, S., M. Inui, and H. Yukawa. 2005. Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl. Microbiol. Biotechnol. 68: 475-480. https://doi.org/10.1007/s00253-005-1900-y
  20. Park, S.-D., J.-Y. Lee, S.-Y. Sim, Y. Kim, and H.-S. Lee. 2007. Characteristics of methionine production by an engineered Corynebacterium glutamicum strain. Metab. Eng. 9: 327-336. https://doi.org/10.1016/j.ymben.2007.05.001
  21. Salvatore, F., F. Cimino, C. M. Maria, and D. Cittadini. 1964. Mechanism of the protection by $_L$-ornithine-$_L$-aspartate mixture and by $_L$-arginine in ammonia intoxication. Arch. Biochem. Biophys. 107: 499-503. https://doi.org/10.1016/0003-9861(64)90307-8
  22. Smith, L. T. 1985. Characterization of a $\gamma$-glutamyl kinase from Escherichia coli that confers proline overproduction and osmotic tolerance. J. Bacteriol. 164: 1088-1093.
  23. Sugiura, M., S. Suzuki, T. Takagi, and M. Kisumi. 1986. Proline production via the arginine biosynthetic pathway: Transfer of regulatory mutations of arginine biosynthesis into a proline-producing strain of Serratia marcescens. Appl. Microbiol. Biotechnol. 24: 153-158.

Cited by

  1. Functional characterization of an ornithine cyclodeaminase-like protein of Arabidopsis thaliana vol.13, pp.None, 2010, https://doi.org/10.1186/1471-2229-13-182
  2. Metabolic evolution of Corynebacterium glutamicum for increased production of L-ornithine vol.13, pp.None, 2010, https://doi.org/10.1186/1472-6750-13-47
  3. Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum vol.12, pp.None, 2010, https://doi.org/10.1186/1475-2859-12-63
  4. Metabolic engineering of Corynebacterium glutamicum for increasing the production of L-ornithine by increasing NADPH availability vol.40, pp.10, 2010, https://doi.org/10.1007/s10295-013-1306-2
  5. Metabolic engineering of microorganisms for the production of L-arginine and its derivatives vol.13, pp.None, 2014, https://doi.org/10.1186/s12934-014-0166-4
  6. Production of L-ornithine from sucrose and molasses by recombinant Corynebacterium glutamicum vol.60, pp.5, 2010, https://doi.org/10.1007/s12223-014-0371-x
  7. Evolution of proline biosynthesis: enzymology, bioinformatics, genetics, and transcriptional regulation vol.90, pp.4, 2015, https://doi.org/10.1111/brv.12146
  8. Implication of ornithine acetyltransferase activity on l‐ornithine production in Corynebacterium glutamicum vol.63, pp.1, 2010, https://doi.org/10.1002/bab.1353
  9. Improvement of l-ornithine production by attenuation of argF in engineered Corynebacterium glutamicum S9114 vol.8, pp.1, 2010, https://doi.org/10.1186/s13568-018-0557-8
  10. Recent Advances of L-ornithine Biosynthesis in Metabolically Engineered Corynebacterium glutamicum vol.7, pp.None, 2019, https://doi.org/10.3389/fbioe.2019.00440
  11. Development of a System of High Ornithine and Citrulline Production by a Plant-Derived Lactic Acid Bacterium, Weissella confusa K-28 vol.42, pp.9, 2010, https://doi.org/10.1248/bpb.b19-00410
  12. Improvement of l-arginine production by in silico genome-scale metabolic network model guided genetic engineering vol.10, pp.3, 2020, https://doi.org/10.1007/s13205-020-2114-9
  13. L-arginine production in Corynebacterium glutamicum: manipulation and optimization of the metabolic process vol.41, pp.2, 2021, https://doi.org/10.1080/07388551.2020.1844625
  14. Production of l-glutamate family amino acids in Corynebacterium glutamicum: Physiological mechanism, genetic modulation, and prospects vol.6, pp.4, 2010, https://doi.org/10.1016/j.synbio.2021.09.005