DOI QR코드

DOI QR Code

Immobilization of Lactobacillus salivarius ATCC 11741 on Loofa Sponge Coated with Chitosan for Lactic Acid Fermentation

  • Chantawongvuti, R. (Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University) ;
  • Veerajetbodithat, J. (Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University) ;
  • Jaturapiree, P. (Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University) ;
  • Muangnapoh, C. (Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University)
  • 발행 : 2010.01.31

초록

Lactic acid (LA) fermentation by Lactobacillus salivarius ATCC 11741 immobilized on loofa sponge (LS) was evaluated. To increase the surface area of LS for cell immobilization, $H_2O_2$ and chitosan were introduced as surface modifying reagents. Four chitosans of different molecular weights were separately coated on LS. All experiments were conducted in shaking flask mode at 100 rpm rotating speed and $37^{\circ}C$ with 5% $CaCO_3$ as a pH regulating agent. The effects of initial glucose concentration were investigated in the range of 20-100 g/l on LA fermentation by free cells. The results indicate that the maximum concentration of LA was produced with 50 g/l glucose concentration. The immobilized cell system produced 1.5 times higher concentration than free cells for 24 h of fermentation. Moreover, immobilized cells can shorten the fermentation time by 2-fold compared with free cells at the same level of LA concentration. At 1% (w/v) chitosan in 2% (v/v) acetic acid, the Yp/s and productivities of various molecular weights of chitosans were insignificantly different. Repeated batch fermentations showed 5 effective recycles with Yp/s and productivity in the range of 0.55-0.85 and 0.90-1.20 g/l.h, respectively. It is evident that immobilization of L. salivarius onto LS permits reuse of the system under these fermentation conditions. Scanning electron micrographs indicated that there were more intact cells on the chitosan-treated LS than on the untreated LS, thus confirming the effectiveness of the LS-chitosan combination when being utilized as a promising immobilization carrier for LA fermentation.

키워드

참고문헌

  1. Audet, P., C. Paquin, and C. Lacroix. 1990. Batch fermentations with a mixed culture of lactic acid bacteria immobilizes separately in $\kappa$-carrageenan locust bean gum gel beads. Appl. Microbiol. Biotechnol. 32: 662-668. https://doi.org/10.1007/BF00164736
  2. Audet, P., C. Paquin, and C. Lacroix. 1998. Immobilized growing lactic acid bacteria with $\kappa$-carrageenan - locust bean gum gel. Appl. Microbiol. Biotechnol. 29: 11-18.
  3. Bottazzi, V. 1988. An introduction to rod-shaped lactic-acid bacteria. Biochimie 70: 303-315. https://doi.org/10.1016/0300-9084(88)90203-9
  4. Cohen, Y. 2001. Biofiltration - the treatment of fluids by microorganisms immobilized into the filter bedding material: A review. Bioresour. Technol. 77: 257-274. https://doi.org/10.1016/S0960-8524(00)00074-2
  5. Ganguly, R., P. Dwivedi, and R. P. Singh. 2007. Production of lactic acid with loofa sponge immobilized Rhizopus oryzae RBU2-10. Bioresour. Technol. 98: 1246-1251. https://doi.org/10.1016/j.biortech.2006.05.004
  6. Ghali, L., S. Msahli, M. Zidi, and F. Sakli. 2009. Effect of pretreatment of Luffa fibres on the structural properties. Mater. Lett. 63: 61-63. https://doi.org/10.1016/j.matlet.2008.09.008
  7. Goncalves, L. M. D., M. T. O. Barreto, A. M. B. R. Xavier, M. J. T. Carrondo, and J. Klein. 1992. Inert supports for lactic acid fermentation - a technology assessment. Appl. Microbiol. Biotechnol. 38: 305-311.
  8. Hofvendahl, K. and B. Hahn-Hagerdal. 2000. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 26: 87-107. https://doi.org/10.1016/S0141-0229(99)00155-6
  9. Idris, A. and W. Suzana. 2006. Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. Process Biochem. 41: 1117-1123. https://doi.org/10.1016/j.procbio.2005.12.002
  10. John, R. P., K. M. Nampoothiri, and A. Pandey. 2007. Production of $_L$(+)lactic acid from cassava starch hydrolyzate by immobilized Lactobacillus delbrueckii. J. Basic Microbiol. 47: 25-30. https://doi.org/10.1002/jobm.200610208
  11. Junter, G. A. and T. Jouenne. 2004. Immobilized viable microbial cells: From the process to the proteome… or the cart before the horse. Biotechnol. Adv. 22: 633-658. https://doi.org/10.1016/j.biotechadv.2004.06.003
  12. Kourkoutas, Y., A. Bekatorou, I. M. Banat, R. Marchant, and A. A. Koutinas. 2004. Immobilization technologies and support materials suitable in alcohol beverage production: A review. Food Microbiol. 21: 377-397. https://doi.org/10.1016/j.fm.2003.10.005
  13. Krishnan, S., M. K. Gowthaman, M. C. Misra, and N. G. Karanth. 2001. Chitosan-treated polypropylene matrix as immobilization support for lactic acid production using Lactobacillus plantarum NCIM 2084. J. Chem. Technol. Biotechnol. 76: 461-468. https://doi.org/10.1002/jctb.406
  14. Lee, J. M. 1992. Biochemical Engineering. Prentice Hall, New Jersey.
  15. Meleigy, S. A. and M. A. Khalaf. 2009. Biosynthesis of gibberellic acid from milk permeate in repeated batch operation by a mutant Fusarium moniliforme cells immobilized on loofa sponge. Bioresour. Technol. 100: 374-379. https://doi.org/10.1016/j.biortech.2008.06.024
  16. Najafpour, G. D. 2007. Biochemical Engineering and Biotechnology. Elsevier, The Netherlands.
  17. Narayanan, N., P. K. Roychoudhury, and A. Srivastava. 2004. $_L$(+)Lactic acid fermentation and its product polymerization. Electron. J. Biotechnol. 7: 167-179.
  18. Ogbonna, J. C., Y. C. Liu, Y. K. Liu, and H. Tanaka. 1994. Loofa (Luffa cylindrical) sponge as a carrier for microbial cell immobilization. J. Ferment. Bioeng. 78: 437-442. https://doi.org/10.1016/0922-338X(94)90043-4
  19. Ogbonna, J. C., S. Tomiyama, Y. C. Liu, and H. Tanaka. 1997. Efficient production of ethanol by cells immobilized in Loofa(Luffa cylindrical) sponge. J. Ferment. Bioeng. 84: 271-274. https://doi.org/10.1016/S0922-338X(97)82069-7
  20. Pillai, C. K. S., W. Paul, and C. P. Sharma. 2009. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 34: 641-678. https://doi.org/10.1016/j.progpolymsci.2009.04.001
  21. Reddy, G., M. Altaf, B. J. Naveena, M. Venkateshwar, and E. V. Kumar. 2008. Amylolytic bacterial lactic acid fermentation - A review. Biotechnol. Adv. 26: 22-34. https://doi.org/10.1016/j.biotechadv.2007.07.004
  22. Renault, F., B. Sancey, P.-M. Badot, and G. Crini. 2009. Chitosan for coagulation/flocculation processes - An eco-friendly approach. Eur. Polym. J. 45: 1337-1348. https://doi.org/10.1016/j.eurpolymj.2008.12.027
  23. Saudagar, P. S., N. S. Shaligram, and R. S. Singhal. 2008. Immobilization of Streptomyces clavuligerus on loofah sponge for the production of clavulanic acid. Bioresour. Technol. 99: 2250-2253. https://doi.org/10.1016/j.biortech.2007.05.004
  24. Scragg, A. H. 1988. Biotechnology for Engineers: Biological Systems in Technological Processes. Ellis Horwood Limited, England.
  25. Senthuran, A., V. Senthuran, R. Hatti-Kaul, and B. Mattiasson. 1999. Lactic acid production by immobilized Lactobacillus casei in recycle batch reactor: A step towards optimization. J. Biotechnol. 73: 61-70. https://doi.org/10.1016/S0168-1656(99)00133-9
  26. Senthuran, A., V. Senthuran, B. Mattiasson, and R. Kaul. 1997. Lactic acid fermentation in a recycle batch reactor using immobilized Lactobacillus casei. Biotechnol. Bioeng. 55: 841-853. https://doi.org/10.1002/(SICI)1097-0290(19970920)55:6<841::AID-BIT3>3.0.CO;2-G
  27. Shen, X. and L. Xia. 2006. Lactic acid production from cellulosic waste by immobilized cells of Lactobacillus delbrueckii. World J. Microbiol. Biotechnol. 22: 1109-1114. https://doi.org/10.1007/s11274-006-9150-4
  28. Shuler, M. L. and F. Kargi. 2001. Bioprocess Engineering. Prentice Hall, New Jersey.
  29. Siebold, M., P. V. Frieling, R. Joppien, D. Rindfleisch, K. Schugerl, and Roper, H. 1995. Comparison of the production of lactic acid by three different lactobacilli and its recovery by extraction and electrodialysis. Process Biochem. 30: 81-95.
  30. Tango, M. S. A. and A. E. Ghaly. 1999. Amelioration of lactic acid production from cheese whey using micro-aeration. Biomass Bioenergy 17: 221-238. https://doi.org/10.1016/S0961-9534(99)00037-9
  31. Vignoli, J. A., M. A. P. C. Celligoi, and R. S. F. Silva. 2006. Development of a statistical model for sorbitol production by free and immobilized Zymomonas mobilis in loofa sponge Luffa cylindrical. Process Biochem. 41: 240-243. https://doi.org/10.1016/j.procbio.2005.06.017
  32. Wee, Y. J., J. N. Kim, and H. W. Ryu. 2006. Biotechnological production of lactic acid and its recent applications. Food Technol. Biotechnol. 44: 163-172.
  33. Yan, J., R. Bajpai, E. Iannotti, M. Popovic, and R. Mueller. 2001. Lactic acid fermentation from enzyme-thinned starch with immobilized Lactobacillus amylovorus. Chem. Biochem. Eng. Q. 15: 59-63.
  34. Zeng, D., J. Wu, and J. F. Kennedy. 2008. Application of a chitosan flocculant to water treatment. Carbohydr. Polym. 71: 135-139. https://doi.org/10.1016/j.carbpol.2007.07.039

피인용 문헌

  1. Research on Immobilization Carrier on Ethanol Fermentation from Food Waste vol.878, pp.None, 2010, https://doi.org/10.4028/www.scientific.net/amr.878.466
  2. Cyclodextrin glycosyltransferase production by free cells of Bacillus circulans DF 9R in batch fermentation and by immobilized cells in a semi-continuous process vol.38, pp.6, 2015, https://doi.org/10.1007/s00449-014-1347-6
  3. Multi-Fixed-Bed Bioreactor System Applied for Bioprocess Development of Immobilized Lactic Acid Bacteria vol.10, pp.1, 2010, https://doi.org/10.2174/1874070701610010001
  4. Evaluation of Fixed-Bed Cultures with Immobilized Lactococcus Lactis ssp. Lactis on Different Scales vol.11, pp.1, 2010, https://doi.org/10.2174/1874070701711010016
  5. Bioprocessing of agro‐industrial residues into lactic acid and probiotic enriched livestock feed vol.99, pp.12, 2010, https://doi.org/10.1002/jsfa.9759