DOI QR코드

DOI QR Code

Efficient and Precise Construction of Markerless Manipulations in the Bacillus subtilis Genome

  • Yu, Haojie (Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Nanjing Agricultural University) ;
  • Yan, Xin (Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Nanjing Agricultural University) ;
  • Shen, Weiliang (Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Nanjing Agricultural University) ;
  • Shen, Yujia (Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Nanjing Agricultural University) ;
  • Zhang, Ji (Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Nanjing Agricultural University) ;
  • Li, Shunpeng (Department of Microbiology, College of Life Sciences, Key Laboratory for Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Nanjing Agricultural University)
  • Published : 2010.01.31

Abstract

We have developed an efficient and precise method for genome manipulations in Bacillus subtilis that allows rapid alteration of a gene sequence or multiple gene sequences without altering the chromosome in any other way. In our approach, the Escherichia coli toxin gene mazF, which was used as a counter-selectable marker, was placed under the control of a xylose-inducible expression system and associated with an antibiotic resistance gene to create a "mazF-cassette". A polymerase chain reaction (PCR)-generated fragment, consisting of two homology regions joined to the mazF-cassette, was integrated into the chromosome at the target locus by homologous recombination, using positive selection for antibiotic resistance. Then, the excision of the mazF-cassette from the chromosome by a single-crossover event between two short directly repeated (DR) sequences, included in the design of the PCR products, was achieved by counter-selection of mazF. We used this method efficiently and precisely to deliver a point mutation, to inactivate a specific gene, to delete a large genomic region, and to generate the in-frame deletion with minimal polar effects in the same background.

Keywords

References

  1. Abremski, K., R. Hoess, and N. Sternberg. 1983. Studies on the properties of P1 site-specific recombination: Evidence for topologically unlinked products following recombination. Cell 32: 1301-1311. https://doi.org/10.1016/0092-8674(83)90311-2
  2. Anagnostopoulos, C. and J. Spizizen. 1961. Requirements for transformation in Bacillus subtilis. J. Bacteriol. 81: 741-746.
  3. Ara, K., K. Ozaki, K. Nakamura, K. Yamane, J. Sekiguchi, and N. Ogasawara. 2007. Bacillus minimum genome factory: Effective utilization of microbial genome information. Biotechnol. Appl. Biochem. 46: 169-178. https://doi.org/10.1042/BA20060111
  4. Baba, T., T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba, et al. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Mol. Syst. Biol. 2: E1-E11.
  5. Ball, P. 2007. Synthetic biology: Designs for life. Nature 448: 32-33. https://doi.org/10.1038/448032a
  6. Baudin, A., O. Ozier-Kalogeropoulos, A. Denouel, F. Lacroute, and C. Cullin. 1993. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21: 3329-3330. https://doi.org/10.1093/nar/21.14.3329
  7. Bhavsar, A. P., Z. X. Mei, and E. D. Brown. 2000. Development and characterization of a xylose-dependent system for expression of cloned genes in Bacillus subtilis: Conditional complementation of a teichoic acid mutant. Appl. Environ. Microbiol. 67: 403-410.
  8. Brans, A., P. Filee, A. Chevigne, A. Claessens, and B. Joris. 2004. New integrative method to generate Bacillus subtilis recombinant strains free of selection markers. Appl. Environ. Microbiol. 70: 7241-7250. https://doi.org/10.1128/AEM.70.12.7241-7250.2004
  9. Dahl, M. K. and C. G. Meinhof. 1994. A series of integrative plasmids for Bacillus subtilis containing unique cloning sites in all three open reading frames for translational lacZ fusions. Gene 145: 151-152. https://doi.org/10.1016/0378-1119(94)90341-7
  10. Defoor, E., M. B. Kryger, and J. Martinussen. 2007. The orotate transporter encoded by oroP from Lactococcus lactis is required for orotate utilization and has utility as a food-grade selectable marker. Microbiology 153: 3645-3659. https://doi.org/10.1099/mic.0.2007/005959-0
  11. Datsenko, K. A. and B. L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U.S.A. 97: 6640-6645. https://doi.org/10.1073/pnas.120163297
  12. Dubnau, D. 1993. Genetic exchange and homologous recombination, pp. 555-584. In A. L. Sonenshein, J. A. Hoch, and R. Losick (eds.). Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. ASM Press, Washington, D.C.
  13. Fabret, C., S. D. Ehrlich, and P. Noirot. 2002. A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Mol. Microbiol. 46: 25-36. https://doi.org/10.1046/j.1365-2958.2002.03140.x
  14. Forster, A. C. and G. M. Church. 2007. Synthetic biology projects in vitro. Genome Res. 17: 1-6.
  15. Guerout-Fleury, A. M., K. Shazand, N. Frandsen, and P. Stragier. 1995. Antibiotic-resistance cassettes for Bacillus subtilis. Gene 167: 335-336. https://doi.org/10.1016/0378-1119(95)00652-4
  16. Harwood, C. R. and S. M. Cutting. 1990. Molecular Methods for Bacillus. John Wiley and Sons Press, Chichester, United Kingdom.
  17. Hartl, B., W. Wehrl, T. Wieqert, G. Homuth, and W. Schumann. 2001. Development of a new integration site within the Bacillus subtilis chromosome and construction of compatible expression cassettes. J. Bacteriol. 183: 2696-2699. https://doi.org/10.1128/JB.183.8.2696-2699.2001
  18. Kim, L., A. Mogk, and W. Schumann. 1996. A xylose-inducible Bacillus subtilis cloning vector and its application. Gene 181: 71-76. https://doi.org/10.1016/S0378-1119(96)00466-0
  19. Kunst, F., N. Ogasawara, I. Moszer, A. M. Albertini, G. Alloni, V. Azevedo, et al. 1997. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390: 249-256. https://doi.org/10.1038/36786
  20. Kobayashi, K., S. D. Ehrlich, A. Albertini, G. Amati, K. K. Andersen, M. Arnaud, et al. 2003. Essential Bacillus subtilis genes. Proc. Natl. Acad. Sci. U.S.A. 100: 4678-4683. https://doi.org/10.1073/pnas.0730515100
  21. Morimoto, T., R. Kadoya, K. Endo, M. Tohata, K. Sawada, S. Liu, et al. 2008. Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Res. 2: 73-81.
  22. Murphy, K. C. 1998. Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J. Bacteriol. 180: 2063-2071.
  23. Oliver, S. G., M. K. Winson, D. B. Kell, and F. Baganz. 1998. Systematic functional analysis of the yeast genome. Trends Biotechnol. 16: 373-378. https://doi.org/10.1016/S0167-7799(98)01214-1
  24. Reyrat, J. M., V. Pelicic, B. Gicquel, and R. Rappuoli. 1998. Counterselectable markers: Untapped tools for bacterial genetics and pathogenesis. Infect. Immun. 66: 4011-4017.
  25. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  26. Schallmey, M., A. Singh, and O. P. Ward. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17. https://doi.org/10.1139/w03-076
  27. Shevchuk, N. A., A. V. Bryksin, Y. A. Nusinovich, F. C. Cabello, M. Sutherland, and S. Ladisch. 2004. Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously. Nucleic Acids Res. 32: e19. https://doi.org/10.1093/nar/gnh014
  28. Sissler, M., C. Delorme, J. Bond, S. D. Ehrlich, P. Renault, and C. Francklyn. 1999. An aminoacyl-tRNA synthetase paralog with a catalytic role in histidine biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 96: 8985-8990. https://doi.org/10.1073/pnas.96.16.8985
  29. Vagner, V., E. Dervyn, and S. D. Ehrlich. 1998. A vector for systematic gene inactivation in Bacillus subtilis. Microbiology 144: 3097-3104. https://doi.org/10.1099/00221287-144-11-3097
  30. Westers, H., R. Dorenbos, J. M. van Dijl, J. Kabel, T. Flanagan, K. M. Devine, et al. 2003. Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol. Biol. Evol. 20: 2076-2090. https://doi.org/10.1093/molbev/msg219
  31. Westers, L., H. Westers, and W. J. Quax. 2004. Bacillus subtilis as cell factory for pharmaceutical proteins: A biotechnological approach to optimize the host organism. Biochim. Biophys. Acta 1694: 299-310. https://doi.org/10.1016/j.bbamcr.2004.02.011
  32. Xin, Y., H. J. Yu, Q. Hong, and S. P. Li. 2008. Cre/lox system and PCR based genome engineering in Bacillus subtilis. Appl. Environ. Microbiol. 74: 5556-5562. https://doi.org/10.1128/AEM.01156-08
  33. Yansura, D. G. and D. J. Henner. 1984. Use of the Escherichia coli lac repressor and operator to control gene expression in Bacillus subtilis. Proc. Natl. Acad. Sci. U.S.A. 81: 439-443. https://doi.org/10.1073/pnas.81.2.439
  34. Zhang, X. Z., X. Yan, Z. L. Cui, Q. Hong, and S. P. Li. 2006. mazF, a novel counter-selectable marker for unmarked chromosomal manipulation in Bacillus subtilis. Nucleic Acids Res. 34: e71. https://doi.org/10.1093/nar/gkl358
  35. Zhang, X. Z., Z. L. Cui, Q. Hong, and S. P. Li. 2005. High-level expression and secretion of methyl parathion hydrolase in Bacillus subtilis WB800. Appl. Environ. Microbiol. 71: 4101-4103. https://doi.org/10.1128/AEM.71.7.4101-4103.2005

Cited by

  1. Using Genomics to Develop Novel Antibacterial Therapeutics vol.36, pp.4, 2010, https://doi.org/10.3109/1040841x.2010.495941
  2. Establishment of a Markerless Mutation Delivery System in Bacillus subtilis Stimulated by a Double-Strand Break in the Chromosome vol.8, pp.11, 2010, https://doi.org/10.1371/journal.pone.0081370
  3. Current development in genetic engineering strategies of Bacillus species vol.13, pp.None, 2010, https://doi.org/10.1186/1475-2859-13-63
  4. Use of transposase and ends of IS608 enables precise and scarless genome modification for modulating gene expression and metabolic engineering applications in Escherichia coli vol.11, pp.1, 2016, https://doi.org/10.1002/biot.201500205
  5. Rewiring the Glucose Transportation and Central Metabolic Pathways for Overproduction of N ‐Acetylglucosamine in Bacillus subtilis vol.12, pp.10, 2010, https://doi.org/10.1002/biot.201700020
  6. MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis vol.7, pp.None, 2010, https://doi.org/10.7554/elife.32471
  7. Bacterial Genome Editing via a Designed Toxin-Antitoxin Cassette vol.7, pp.3, 2010, https://doi.org/10.1021/acssynbio.6b00287
  8. A Simplified Method for CRISPR-Cas9 Engineering of Bacillus subtilis vol.9, pp.2, 2021, https://doi.org/10.1128/spectrum.00754-21
  9. Plasmid Curing and Exchange Using a Novel Counter-Selectable Marker Based on Unnatural Amino Acid Incorporation at a Sense Codon vol.22, pp.21, 2010, https://doi.org/10.3390/ijms222111482