DOI QR코드

DOI QR Code

Method Development for Electrotransformation of Acidithiobacillus caldus

  • Chen, Linxu (State Key Laboratory of Microbial Technology, Shandong University) ;
  • Lin, Jianqun (State Key Laboratory of Microbial Technology, Shandong University) ;
  • Li, Bing (State Key Laboratory of Microbial Technology, Shandong University) ;
  • Lin, Jianqiang (State Key Laboratory of Microbial Technology, Shandong University) ;
  • Liu, Xiangmei (State Key Laboratory of Microbial Technology, Shandong University)
  • Published : 2010.01.31

Abstract

Acidithiobacillus caldus is an acidophilic, chemolithotrophic bacterium that plays an important role in bioleaching. Gene transformation into A. caldus is difficult, and only the conjugation method was reported successful, which was a relatively sophisticated method. In this research, electrotransformation of A. caldus species was achieved for the first time using A. caldus Y-3 and plasmid pJRD215. Transformants were confirmed by colony PCR specific to the str gene on pJRD215, and the recovery of the plasmid from the presumptive transformants. Optimizations were made and the transformation efficiency was increased from 0.8 to $3.6{\times}10^4$ transformants/${\mu}g$ plasmid DNA. The developed electrotransformation method was convenient in introducing foreign genes into A. caldus.

Keywords

References

  1. Alexander, B., S. Leach, and W. J. Ingledew. 1987. The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans. Gen. Microbiol. 133: 1171-1179. https://doi.org/10.1099/00221287-133-5-1171
  2. Blake, R., M. M. Lyles, and R. Simmons. 1995. Morphological and physical aspects of attachment of Thiobacillus ferrooxidans to pyrite and sulphur, pp. 13-22. In T. Vargas, C. A. Jerez, J. V. Wiertz, and H. Toledo (eds.). Biohydrometallurgical Processing. University of Chile, Santiago de Chile.
  3. Calvin, N. M. and P. C. Hanawalt. 1988. High-efficiency transformation of bacterial cells by electroporation. J. Bacteriol. 170: 2796-2801.
  4. Chu, G., H. Hayakawa, and P. Berg. 1987. Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res. 15: 1311-1326. https://doi.org/10.1093/nar/15.3.1311
  5. Davison, J., M. Heusterspreute, N. Chevalier, V. Ha-Thi, and F. Brunel. 1987. Vectors with restriction site banks. V. pJRD215, a wide-host-range cosmid vector with multiple cloning sites. Gene 51: 275-280. https://doi.org/10.1016/0378-1119(87)90316-7
  6. Dopson, M. and E. B. Lindstrom. 1999. Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl. Environ. Microbiol. 65: 36-40.
  7. Dower, W. J., J. F. Miller, and C. W. Ragsdale. 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acid Res. 16: 6127-6145. https://doi.org/10.1093/nar/16.13.6127
  8. Edwards, K. J., P. L. Bond, and J. F. Banfield. 2000. Characteristics of attachment and growth of Thiobacillus caldus on sulphide minerals: A chemotactic response to sulphur minerals- Environ. Microbiol. 2: 324-332. https://doi.org/10.1046/j.1462-2920.2000.00111.x
  9. Fromm, M., L. Taylor, and V. Walbot. 1985. Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc. Natl. Acad. Sci. U.S.A. 82: 5824-5828. https://doi.org/10.1073/pnas.82.17.5824
  10. Gehrke, T., J. Telegdi, D. Thierry, and W. Sand. 1998. Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching. Appl. Environ. Microbiol. 64: 2743-2747.
  11. Gehrke, T., R. Hallmann, and W. Sand. 1995. Importance of exopolymers from Thiobacillus ferrooxidans and Leptospirillum ferrooxidans for bioleaching, pp. 1-11. In T. Vargas, C. A. Jerez, J. V. Wiertz, and H. Toledo (eds.). Biohydrometallurgical processing. University of Chile, Santiago de Chile.
  12. Hallberg, K. B. and E. B. Lindstrom. 1994. Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology. 140: 3451-3456. https://doi.org/10.1099/13500872-140-12-3451
  13. Hallberg, K. B. and E. B. Lindstrom. 1996. Multiple serotypes of the moderate thermophile Thiobacillus caldus, a limitation of immunological assays for biomining microorganisms. Appl. Environ. Microbiol. 62: 4243-4246.
  14. Hallberg, K. B., M. Dopson, and E. B. Lindstrom. 1996. Arsenic toxicity is not due to a direct effect on the oxidation of reduced inorganic sulfur compounds by Thiobacillus caldus. FEMS Microbiol. Lett. 145: 409-414. https://doi.org/10.1111/j.1574-6968.1996.tb08608.x
  15. Hattermann, D. R., and G.. Stacey. 1990. Efficient DNA transformation of Bradyrhizobium japonicum by electroporation. Appl. Environ. Microbiol. 56: 833-836.
  16. Iwazaki, K., H. Uchiyama, O. Yagi, T. Kurabayashi, K. Ishizuka, and Y. Takamura. 1994. Transformation of Pseudomonas putida by electroporation. Biosci. Biotech. Biochem. 58: 851-854. https://doi.org/10.1271/bbb.58.851
  17. Jin, S. M., W. M. Yan, and Z. N. Wang. 1992. Transfer of IncP plasmids to extremely acidophilic Thiobacillus thiooxidans. Appl. Environ. Microbiol. 58: 429-430.
  18. Kamimura, K., T. Okayama, K. Murakami, and T. Sugio. 1999. Isolation and characterization of a moderately thermophilic sulfur-oxidizing bacterium. Microbios 99: 7-18.
  19. Kusano, T., K. Sugawara, C. Inoue, T. Takeshima, M. Numata, and T. Shiratori. 1992. Electrotransformation of Thiobacillus ferrooxidans with plasmids containing a mer determinant. J. Bacteriol. 174: 6617-6623.
  20. Liu, H. L., B. Y. Chen, Y. W. Lan, and Y. C. Cheng. 2003. SEM and AFM images of pyrite surfaces after bioleaching by the indigenous Thiobacillus thiooxidans. Appl. Microbiol. Biotechnol. 62: 414-420. https://doi.org/10.1007/s00253-003-1280-0
  21. Liu, J. S., Y. Yan, H. T. Wang, and X. M. Wang. 2007. Progress in research on extracellular polymeric substance of Thiobacillus ferrooxidous. Metal Mine 378: 14-16.
  22. Liu, X. M., J. Q. Lin, Z. Zhang, J. Bian, Y. Liu, J. Q. Lin, and W. M. Yan. 2007. Construction of conjugative gene transfer system between E. coli and moderately thermophilic, extremely acidophilic Acidithiobacillus caldus MTH-04. J. Microbiol. Biotechnol. 17: 162-167.
  23. Pogliani, C. and E. Donati. 1999. The role of exopolymers in the bioleaching of a non-ferrous metal sulphide. J. Ind. Microbiol. Biotechnol. 22: 88-92. https://doi.org/10.1038/sj.jim.2900610
  24. Rawlings, D. E. 1998. Industrial practice and the biology of leaching of metals from ores. J. Ind. Microbiol. Biotechnol. 20: 268-274. https://doi.org/10.1038/sj.jim.2900522
  25. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  26. Schaeffer, W. I., P. E. Holbert, and W. W. Umbreit. 1963. Attachment of Thiobacillus thiooxidans to sulfur crystals. J. Bacteriol. 85: 137-140.
  27. Simon, J. R. and K. McEntee. 1989. A rapid and efficient procedure for transformation of intact Saccharomyces cerevisiae by electroporation. Biochem. Biophys. Res. Commun. 164: 1157-1164. https://doi.org/10.1016/0006-291X(89)91790-7
  28. Simon, R., U. Priefer, and A. Puhier. 1983. A broad host range mobilization system for in vitro genetic engineering: Transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1: 784-791. https://doi.org/10.1038/nbt1183-784
  29. Swaving, J., W. van Leest, A. J. J. van Ooyen, and J. A. M. de Bont. 1996. Electrotransformation of Xanthobacter autotrophicus GJ10 and other Xanthobacter strains. J. Microbiol. Methods 25: 343-348. https://doi.org/10.1016/0167-7012(96)00007-3
  30. Touvinen, O. H., S. I. Niemela, and H. G. Gyllenberg. 1971. Effect of mineral nutrients and organic substances on the development of Thiobacillus ferrooxidans. Biotechnol. Bioeng. 13: 517-527. https://doi.org/10.1002/bit.260130406

Cited by

  1. Acidithiobacillus caldus Sulfur Oxidation Model Based on Transcriptome Analysis between the Wild Type and Sulfur Oxygenase Reductase Defective Mutant vol.7, pp.9, 2010, https://doi.org/10.1371/journal.pone.0039470
  2. The Two-Component System RsrS-RsrR Regulates the Tetrathionate Intermediate Pathway for Thiosulfate Oxidation in Acidithiobacillus caldus vol.7, pp.None, 2010, https://doi.org/10.3389/fmicb.2016.01755
  3. Experiences and Future Challenges of Bioleaching Research in South Korea vol.6, pp.4, 2010, https://doi.org/10.3390/min6040128
  4. Metals and minerals as a biotechnology feedstock: engineering biomining microbiology for bioenergy applications vol.45, pp.None, 2010, https://doi.org/10.1016/j.copbio.2017.03.009
  5. Construction of novel pJRD215-derived plasmids using chloramphenicol acetyltransferase ( cat ) gene as a selection marker for Acidithiobacillus caldus vol.12, pp.8, 2010, https://doi.org/10.1371/journal.pone.0183307
  6. In a Quest for Engineering Acidophiles for Biomining Applications: Challenges and Opportunities vol.9, pp.2, 2010, https://doi.org/10.3390/genes9020116
  7. Function analysis of 5′-UTR of the cellulosomal xyl - doc cluster in Clostridium papyrosolvens vol.11, pp.None, 2018, https://doi.org/10.1186/s13068-018-1040-0