RAG1 유전자의 염기서열에 기초한 왜매치 Abbottina springeri (잉어목, 잉어과)의 분자계통학적 위치

Molecular Phylogenetic Position of Abbottina springeri (Cypriniformes: Cyprinidae) Based on Nucleotide Sequences of RAG1 Gene

  • 김근용 (순천향대학교 해양생명공학과) ;
  • 방인철 (순천향대학교 해양생명공학과)
  • Kim, Keun-Yong (Department of Marine Biotechnology, Soonchunhyang University) ;
  • Bang, In-Chul (Department of Marine Biotechnology, Soonchunhyang University)
  • 투고 : 2010.09.15
  • 심사 : 2010.12.18
  • 발행 : 2010.12.31

초록

왜매치 Abbottina springeri Banarescu and Nalbant의 분자계통학적 위치를 밝히기 위해 한국에 서식하는 버들매치속 2종과 모래주사속 5종의 핵 유전자인 recombination activating gene 1 (RAG1)의 염기서열을 분석하였다. RAG1 유전자 염기서열 정보에 기초한 계통수에서 배들매치 A. rivularis는 단계통군을 형성하는 왜매치, Biwia zezera 및 모래주사속 종들과 분리되었다. 이 계통 내에서 B. zezera는 왜매치와 모래주사속 5종을 구성된 단계통 그룹과 자매계통 관계를 보였다. 분자계통수 상에서 버들매치속 2종은 다계통군으로 나타났고, 이러한 결과는 골격 특징들에 근거한 이들의 계통적 관계를 밝힌 선행연구와 잘 일치하였다. 따라서 입의 피질돌기 유무와 부레의 골낭 유무와 크기 등과 같은 형태적 특징들에 근거한 버들배치속과 모래주사속의 현분류체계는 진화 역사를 잘 반영하지 못하는 것으로 여겨진다.

Partial nucleotide sequences of nuclear protein-coding recombination activating gene 1 (RAG1) gene of two Abbottina and five Microphysogobio species residing in Korea were analyzed to elucidate the molecular phylogenetic position of A. springeri Banarescu and Nalbant. In RAG1 tree A. rivularis was clearly separated from the monophyletic lineage composed of A. springeri, Biwia zezera and Microphysogobio species. Within this lineage B. zezera showed sister-group relationship to the monophyletic group composed of A. springeri and five Microphysogobio species. Thus, our phylogenetic tree revealed the polyphyletic nature of two Abbottina species from Korea, which result is well congruent with the previous phyletic assumption based on osteological features. The current classification of Abbottina and Microphysogobio based on morphological criteria, such as the presence or absence of papillae on lips and size of swim bladder with or without encapsulation, does not reflect their true evolutionary history.

키워드

참고문헌

  1. Asahida, T., T. Kobayashi, K. Saitoh and I. Nakayama. 1996. Tissue preservation and total DNA extraction from fish stored at ambient temperature using buffers containing high concentration of urea. Fish. Sci., 62: 727-730. https://doi.org/10.2331/suisan.62.727
  2. Banarescu, P. and T.T. Nalbant. 1973. Pisces, Teleostei, Cyprinidae (Gobioninae). Das Tierreich Lieferung 93. Walter de Gruyter, Berlin, 304pp.
  3. Banarescu, P.M. 1992. A critical updated checklist of Gobioninae (Pisces, Cyprinidae). Trav. Mus. Hist. Nat. "Grigore Antipa," XXXII: 303-330.
  4. Chen, W.-J., R. Ruiz-Carus and G. Orti. 2007. Relationships among four genera of mojarras (Teleostei: Perciformes: Gerreidae) from the western Atlantic and their tentative placement among percomorph fishes. J. Fish Biol., 70 (Suppl. B): 202-218. https://doi.org/10.1111/j.1095-8649.2007.01395.x
  5. Chen, W.-J., M. Miya, K. Saitoh and R.L. Mayden. 2008. Phylogenetic utility of two existing and four novel nuclear gene loci in reconstructing Tree of Life of rayfinned fishes: The order Cypriniformes (Ostariophysi) as a case study. Gene, 423: 125-134. https://doi.org/10.1016/j.gene.2008.07.016
  6. Conway, K.W., W.-J. Chen and R.L. Mayden. 2008. The "Celestial Pearl danio" is a miniature Danio (s.s) (Ostariophysi: Cyprinidae): evidence from morphology and molecules. Zootaxa, 1686: 1-28.
  7. De, P. and K.K. Rodgers. 2004. Putting the pieces together: identification and characterization of structural domains in the V(D)J recombination protein RAG1. Immunol. Rev., 200: 70-82. https://doi.org/10.1111/j.0105-2896.2004.00154.x
  8. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39: 783-791. https://doi.org/10.2307/2408678
  9. Fugmann, S.D., A.I. Lee, P.E. Shockett, I.J. Villey and D.G. Schatz. 2000. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu. Rev. Immunol., 18: 495-527. https://doi.org/10.1146/annurev.immunol.18.1.495
  10. Groth, J.G. and G.F. Barrowclough. 1999. Basal divergences in birds and the phylogenetic utility of the nuclear RAG-1 gene. Mol. Phylogenet. Evol., 12: 115-123. https://doi.org/10.1006/mpev.1998.0603
  11. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser., 41: 95-98.
  12. Hosoya, K. 1986. Interrelationships of the Gobioninae (Cyprinidae). In: Uyeno T., R. Arai, T. Taniuchi and K. Matsuura (eds.), Indo-Pacific Fish Biology: Proceeding of the Second International Conference on Indo-Pacific Fishes, Ichthyological Society of Japan, Tokyo, pp. 484-501.
  13. Im, J.H., W.-O. Lee, L. Peng, J.K. Noh, Y.K. Nam and D.S. Kim. 2004. Cytogenetic and molecular studies of endangered freshwater species from Korea I. Microphy-sogobio longidorsalis Mori (Cyprinidae: Gobioninae). Korean J. Ichthyol., 16: 189-200.
  14. Kang, E.-J. 1991. Phylogenetic study on the subfamily Gobioninae (Pisces: Cyprinidae) from Korea as evidenced by their comparative osteology and myology. Ph.D. Thesis, Chonbuk National University, Jeonju, 105pp. (in Korean)
  15. Kawase, S. and K. Hosoya. 2010. Biwia yodoensis, a new species from the Lake Biwa/Yodo River Basin, Japan (Teleostei: Cyprinidae). Ichthyol. Explor. Freshwaters, 21: 1-7.
  16. Kim, I.-S. 1984. The taxonomic study of gudgeons of the subfamily Gobioninae (Cyprinidae) in Korea. Bull. Korean Fish. Soc., 17: 436-448.
  17. Li, C., G. Orti, G. Zhang and G. Lu. 2007. A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evol. Biol., 7: 44. https://doi.org/10.1186/1471-2148-7-44
  18. Lopez, J.A., W.-J. Chen and G. Orti. 2004. Esociform phylogeny. Copeia, 2004: 449-464.
  19. Mayden, R.L., K.L. Tang, R.M. Wood, W.-J. Chen, M.K. Agnew, K.W. Conway, L. Yang, A.M. Simons, H.L. Bart, P.M. Harris, J. Li, X. Wang, K. Saitoh, S. He, H. Liu, Y. Chen, M. Nishida and M. Miya. 2008. Inferring the Tree of Life of the order Cypriniformes, the earth's most diverse clade of freshwater fishes: Implications of varied taxon and character sampling. J. Syst. Evol., 46: 424-438.
  20. Mori, T. 1935. Descriptions of two new genera and seven new species of Cyprinidae from Chosen. Annot. Zool. Japon, 15: 161-181.
  21. Oettinger, M.A., D.G. Schatz, C. Gorka and D. Baltimore. 1990. RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science, 248: 1517-1523. https://doi.org/10.1126/science.2360047
  22. Posada, D. and K.A. Crandall. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics, 14: 817-818. https://doi.org/10.1093/bioinformatics/14.9.817
  23. Ronquist, F. and J.P. Huelsenbeck. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19: 1572-1574. https://doi.org/10.1093/bioinformatics/btg180
  24. Sambrook, J. and D.W. Russell. 2001. Molecular cloning: a laboratory manual. Third edition. Cold Spring Harbor Laboratory Press, New York.
  25. Schatz, D.G., M.A. Oettinger and D. Baltimore. 1989. The V(D)J recombination activating gene, RAG-1. Cell, 59: 1035-1048. https://doi.org/10.1016/0092-8674(89)90760-5
  26. Slechtova, V., J. Bohlen and H.H. Tan. 2007. Families of Cobitoidea (Teleostei; Cypriniformes) as revealed from nuclear genetic data and the position of the mysterious genera Barbucca, Psilorhynchus, Serpenticobitis and Vaillantella. Mol. Phylogenet. Evol., 44: 1358-1365. https://doi.org/10.1016/j.ympev.2007.02.019
  27. Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihoodbased phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22: 2688-2690. https://doi.org/10.1093/bioinformatics/btl446
  28. Stamatakis, A., P. Hoover and J. Rougemont. 2008. A rapid bootstrap algorithm for the RAxML Web servers. Syst. Biol., 57: 758-771. https://doi.org/10.1080/10635150802429642
  29. Sullivan, J.P., J.G. Lundberg and M. Hardman. 2006. A phylogenetic analysis of the major groups of catfishes (Teleostei: Siluriformes) using rag1 and rag2 nuclear gene sequences. Mol. Phylogenet. Evol., 41: 636-662. https://doi.org/10.1016/j.ympev.2006.05.044
  30. Swofford, D.L. 2002. $PAUP^{\ast}$: Phylogenetic analysis using parsimony ($^{\ast}$and other methods). Ver. 4, Sinauer Associates, Sunderland.
  31. Venkatesh, B., M.V. Erdmann and S. Brenner. 2001. Molecular synapomorphies resolve evolutionary relationships of extant jawed vertebrates. Proc. Natl. Acad. Sci. USA, 98: 11382-11387. https://doi.org/10.1073/pnas.201415598
  32. Vieites, D.R., M.-S. Min and D.B. Wake. 2007. Rapid diversification and dispersal during periods of global warming by plethodontid salamanders. Proc. Natl. Acad. Sci. USA, 104: 19903-19907. https://doi.org/10.1073/pnas.0705056104