References
- T. O'D. Halsey and A. S. Krausz, "Thermally activated deformation. I. Method of analysis", J. Appl. Phy., 45, 2013 (1974). https://doi.org/10.1063/1.1663538
- A. S. Krausz and H. Eyring, "Deformation Kinetics", John Wiley and sons, New York, 1975.
- Z. H. Stachurski, "Micromechanics of stress relaxation in amorphous glassy PMMA. Part I. Molecular model for anelastic behaviour", Polymer, 43, 7419 (2002). https://doi.org/10.1016/S0032-3861(02)00688-2
- M. T. Abadi, "Micromechanical analysis of stress relaxation response of fiber-reinforced polymers", Composites Science and Technology, 69, 1286 (2009). https://doi.org/10.1016/j.compscitech.2009.02.036
- S. A. Baeurle, A. Hotta, and A. A. Gusev, "A new semi-phenomenological approach to predict the stress relaxation behavior of thermoplastic elastomers", Polymer, 46, 4344 (2005). https://doi.org/10.1016/j.polymer.2004.07.034
- M. Patel, P. R. Morrell, and J. J. Murphy, "Continuous and intermittent stress relaxation studies on foamed polysiloxane rubber", Polymer Degradation and Stability, 87, 201 (2005). https://doi.org/10.1016/j.polymdegradstab.2004.07.020
- H. H. Le, S. Ilisch, and H. J. Radusch, "Characterization of effect of the filler dispersion on the stress relaxation behavior of carbon black filled ruber composites", Polymer, 50, 2294 (2009). https://doi.org/10.1016/j.polymer.2009.02.051
- V. P. Privalko, S. M. Ponomarenko, E. G. Privalko, F. Schön, and W. Gronski, "Thermoelasticity and stress relaxation behavior of polychloroprene/organoclay nanocomposites", European Polymer Journal, 41, 3042 (2005). https://doi.org/10.1016/j.eurpolymj.2005.06.011
- S. Siengchin and J. K. Kocsis, "Mechanical and stress relaxation behavior of santroprene thermoplastic elastomer/boehmit alumina nanocomposites produced by water-mediated and direct melt compounding", Composites Part A: Applied Science and Manufacturing, 41, 768 (2010). https://doi.org/10.1016/j.compositesa.2010.02.009
- P. H. DeHoff and K. J. Anusavice, "Shear stress relaxation of dental ceramics determined from creep behavior", Dental Materials, 20, 717 (2004). https://doi.org/10.1016/j.dental.2003.10.005
- R. K. June, S. Ly and D. P. Fyhrie, "Cartilage stress relaxation proceeds slower at higher compressive strains", Archives of Biochemistry and Biophysics, 483, 75 (2009). https://doi.org/10.1016/j.abb.2008.11.029
- C. Machiraju, A. V. Phan, A. W. Pearsall, and S. Madanagopal, "Viscoelastic studies of human subscapularis tendon: Relaxation test and a Wiechert model", Computer Methods and Programs in Biomedicine, 83, 29 (2006). https://doi.org/10.1016/j.cmpb.2006.05.004
- N. J. Kim, E. R. Kim, and S. J. Hahn, "The rheological and mechanical model for relaxation spectra of polydisperse polymers", Bull. Korean Chem. Soc., 13, 413 (1992).
- N. J. Kim, E. R. Kim, and S. J. Hahn, "Solvent effect on stress relaxation of PET filament fibers and self diffusion of crystallites", Bull. Korean Chem. Soc., 12, 468 (1991).
- T. Kunugi, Y. Isobe, K. Kimura, Y. Asanuma, and M. Hashimoto, "Stress relaxation of oriented nylon 6 fibers", J. Appl. Polym. Sci., 24, 923 (1979). https://doi.org/10.1002/app.1979.070240405
- S. P. Mishra and B. L. Deopula, "Tie chains and modulus of nylon 6 fibers", J. Appl. Polym. Sci., 27, 3211 (1982). https://doi.org/10.1002/app.1982.070270903
- A. J. Owen and R. Bonart, "Cooperative relaxation processes in polymers", polymer, 26, 1034 (1985). https://doi.org/10.1016/0032-3861(85)90225-3
- K. W. Chase and W. Goldsmith, "Mechanical and optical characterization of anelastic polymer at large strain rates and large strains", Experimental Mechanics, 17, 10 (1974).
- V. B. Gupta and S. Kumar, "A model for nonlinear creep of textile fibers", Text. Res. J., 47, 647(1977).
- S. Kumar and V. B. Gupta, "A nonlinear viscoelastic model for textile fibers", Text. Res. J., 48, 429 (1978). https://doi.org/10.1177/004051757804800712