Stress Relaxation and Nonlinear Viscoelastic Model of PAN-PVC Copolymers

PAN-PVC 공중합체의 응력완화와 비선형 점탄성 모델

  • Received : 2010.07.19
  • Accepted : 2010.09.07
  • Published : 2010.12.31

Abstract

From the three element non-Newtonian model of one non-Newtonian viscoelastic Maxwell elements and a elastic spring, the stress relaxation equation was derived. The various model parameters of this equation were evaluated by appling the experimental results of stress relaxation to the stress relaxation equation. The theoretical curves calculated from this model parameters agreed with the experimental stress relaxation curves. From the parameters of nonlinear viscoelastic model, the hole volume, fine structure, viscoelastic properties and mechanical properties of polymer fibers were studied. The experiments of stress relaxation were carried out using the tensile tester with the solvent chamber. The stress relaxation curves of the two types polyacrylonitrile-polyvinylchloride copolymer and another two types PVC monofilament fibers were obtained in air and water of various temperatures.

비뉴톤 점탄성 Maxwell 요소와 탄성 스프링으로 이루어진 3 요소 비뉴톤 모델로부터 응력완화 식을 유도하였다. 이 식을 응력완화 실험 결과에 적용하여 여러 가지 모델 파라메타를 계산하였다. 모델 파라메타로부터 계산한 이론 곡선은 실험적인 응력완화 곡선과 잘 일치하였다. 비선형 점탄성 모델 파라메타로부터 섬유고분자 물질의 홀부피, 미세구조, 점탄성성질, 역학적인 성질 등을 연구하였다. 응력완화 실험은 용매기를 부착한 인장 시험기를 사용하였으며, 시료는 두 종류의 polyacrylonitrile-polyvinylchloride 공중합체와 또 다른 두 종류의 PVC 모노 필라멘트 섬유를 여러 온도의 공기와 물속에서 응력완화 실험을 하였다.

Keywords

References

  1. T. O'D. Halsey and A. S. Krausz, "Thermally activated deformation. I. Method of analysis", J. Appl. Phy., 45, 2013 (1974). https://doi.org/10.1063/1.1663538
  2. A. S. Krausz and H. Eyring, "Deformation Kinetics", John Wiley and sons, New York, 1975.
  3. Z. H. Stachurski, "Micromechanics of stress relaxation in amorphous glassy PMMA. Part I. Molecular model for anelastic behaviour", Polymer, 43, 7419 (2002). https://doi.org/10.1016/S0032-3861(02)00688-2
  4. M. T. Abadi, "Micromechanical analysis of stress relaxation response of fiber-reinforced polymers", Composites Science and Technology, 69, 1286 (2009). https://doi.org/10.1016/j.compscitech.2009.02.036
  5. S. A. Baeurle, A. Hotta, and A. A. Gusev, "A new semi-phenomenological approach to predict the stress relaxation behavior of thermoplastic elastomers", Polymer, 46, 4344 (2005). https://doi.org/10.1016/j.polymer.2004.07.034
  6. M. Patel, P. R. Morrell, and J. J. Murphy, "Continuous and intermittent stress relaxation studies on foamed polysiloxane rubber", Polymer Degradation and Stability, 87, 201 (2005). https://doi.org/10.1016/j.polymdegradstab.2004.07.020
  7. H. H. Le, S. Ilisch, and H. J. Radusch, "Characterization of effect of the filler dispersion on the stress relaxation behavior of carbon black filled ruber composites", Polymer, 50, 2294 (2009). https://doi.org/10.1016/j.polymer.2009.02.051
  8. V. P. Privalko, S. M. Ponomarenko, E. G. Privalko, F. Schön, and W. Gronski, "Thermoelasticity and stress relaxation behavior of polychloroprene/organoclay nanocomposites", European Polymer Journal, 41, 3042 (2005). https://doi.org/10.1016/j.eurpolymj.2005.06.011
  9. S. Siengchin and J. K. Kocsis, "Mechanical and stress relaxation behavior of santroprene thermoplastic elastomer/boehmit alumina nanocomposites produced by water-mediated and direct melt compounding", Composites Part A: Applied Science and Manufacturing, 41, 768 (2010). https://doi.org/10.1016/j.compositesa.2010.02.009
  10. P. H. DeHoff and K. J. Anusavice, "Shear stress relaxation of dental ceramics determined from creep behavior", Dental Materials, 20, 717 (2004). https://doi.org/10.1016/j.dental.2003.10.005
  11. R. K. June, S. Ly and D. P. Fyhrie, "Cartilage stress relaxation proceeds slower at higher compressive strains", Archives of Biochemistry and Biophysics, 483, 75 (2009). https://doi.org/10.1016/j.abb.2008.11.029
  12. C. Machiraju, A. V. Phan, A. W. Pearsall, and S. Madanagopal, "Viscoelastic studies of human subscapularis tendon: Relaxation test and a Wiechert model", Computer Methods and Programs in Biomedicine, 83, 29 (2006). https://doi.org/10.1016/j.cmpb.2006.05.004
  13. N. J. Kim, E. R. Kim, and S. J. Hahn, "The rheological and mechanical model for relaxation spectra of polydisperse polymers", Bull. Korean Chem. Soc., 13, 413 (1992).
  14. N. J. Kim, E. R. Kim, and S. J. Hahn, "Solvent effect on stress relaxation of PET filament fibers and self diffusion of crystallites", Bull. Korean Chem. Soc., 12, 468 (1991).
  15. T. Kunugi, Y. Isobe, K. Kimura, Y. Asanuma, and M. Hashimoto, "Stress relaxation of oriented nylon 6 fibers", J. Appl. Polym. Sci., 24, 923 (1979). https://doi.org/10.1002/app.1979.070240405
  16. S. P. Mishra and B. L. Deopula, "Tie chains and modulus of nylon 6 fibers", J. Appl. Polym. Sci., 27, 3211 (1982). https://doi.org/10.1002/app.1982.070270903
  17. A. J. Owen and R. Bonart, "Cooperative relaxation processes in polymers", polymer, 26, 1034 (1985). https://doi.org/10.1016/0032-3861(85)90225-3
  18. K. W. Chase and W. Goldsmith, "Mechanical and optical characterization of anelastic polymer at large strain rates and large strains", Experimental Mechanics, 17, 10 (1974).
  19. V. B. Gupta and S. Kumar, "A model for nonlinear creep of textile fibers", Text. Res. J., 47, 647(1977).
  20. S. Kumar and V. B. Gupta, "A nonlinear viscoelastic model for textile fibers", Text. Res. J., 48, 429 (1978). https://doi.org/10.1177/004051757804800712