References
- Andersen, L. B. G. and Brotherton-Ratcliffe, R. (1997), The equity option volatility smile: An implicit finite- difference approach, Journal of Computational Finance, 1(2), 5-37.
- Bakshi, G., Cao, C., and Chen, Z. (1997), Empirical Performance of Alternative Option Pricing Models, Journal of Finance, 52, 2003-2049. https://doi.org/10.2307/2329472
- Black, F. and Scholes, M. (1973), The Pricing of Options and Corporate Liabilities, Journal of Politics and Economics, 81, 637-654. https://doi.org/10.1086/260062
- Breeden, D. and Litzenberger, R. (1978), Price of statecontingent claims implicit in options prices, Journal of Business, 51, 621-651. https://doi.org/10.1086/296025
- Byrd, R. H., Gilbert, J. C., and Nocedal, J. (2000), A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming, Mathematical Programming, 89, 149-185. https://doi.org/10.1007/PL00011391
- Byrd, R. H., Hribar, M. E., and Nocedal, J. (1999), An Interior Point Algorithm for Large-Scale Nonlinear Programming, SIAM Journal on Optimization, 9, 877-900. https://doi.org/10.1137/S1052623497325107
- Carr, P. and Madan, D. B. (2005), A Note on Sufficient Conditions for No Arbitrage, Finance Research Letters, 2, 125-130. https://doi.org/10.1016/j.frl.2005.04.005
- Cont, R. and da Fonseca, J. (2002), Dynamics of Implied Volatility Surfaces, Quantitative Finance, 2, 45-60. https://doi.org/10.1088/1469-7688/2/1/304
- Cont, R. and Tankov, P. (2004), Financial Modeling with Jump Processes, Chapman and Hall, Florida.
- de Boor, C. (1962), Bicubic Spline Interpolation, Journal of Mathematical Physics, 41, 212-218. https://doi.org/10.1002/sapm1962411212
- Dempster, M. A. H. and Richards, D. G. (2000), Pricing American options fitting the smile, Mathematical Finance, 10(2), 157-177. https://doi.org/10.1111/1467-9965.00087
- Derman, E. and Kani, I. (1994), Riding on a smile, RISK, 7(2), 32-39.
- Dumas, B., Fleming, J., and Whaley, R. E. (1998), Implied Volatility Functions: Empirical Tests, Journal of Finance, 53, 2059-2106. https://doi.org/10.1111/0022-1082.00083
- Dupire, B. (1994), Pricing with a Smile, RISK, 7(1), 18- 20.
- Konstantinidi, E., Skiadopoulos, G., and Tzagkaraki, E. (2008), Can the Evolution of Implied Volatility be Forecasted? Evidence from European and US Implied Volatility Indices, Journal of Banking and Finance, 32, 2401-2411. https://doi.org/10.1016/j.jbankfin.2008.02.003
- Fengler, M. R. (2005), Arbitrage-free Smoothing of the Implied Volatility Surface, Quantitative Finance, 9, 417-428.
- Han, G.-S. and Lee, J. (2008), Prediction of pricing and hedging errors for equity linked warrants with Gaussian process models, Expert Systems with Applications, 35, 515-523. https://doi.org/10.1016/j.eswa.2007.07.041
- Han, G.-S., Kim, B.-H., and Lee, J. (2009), Kernelbased Monte Carlo simulation for American option pricing, Expert Systems with Applications, 36, 4431- 4436. https://doi.org/10.1016/j.eswa.2008.05.004
-
Hull, J. H. (2009), Option, Futures, and Other Derivatives
$7^{th}$ edition, Prentice Hall, New Jersey. - Kim, N.-H., Lee, J., and Han, G.-S. (2009), Model Averaging Methods for Estimating Implied Volatility and Local Volatility Surfaces, Industrial Engineering and Management Science, 8(2), 93-100.
- Lee, J. and Lee, D.-W. (2005), An Improved Cluster Labeling Method for Support Vector Clustering, IEEE Trans. on Pattern Analysis and Machine Intelligence, 27, 461-464. https://doi.org/10.1109/TPAMI.2005.47
- Lee, J. and Lee, D.-W. (2006), Dynamic Characterization of Cluster Structures for Robust and Inductive Support Vector Clustering, IEEE Trans. on Pattern Analysis and Machine Intelligence, 28, 1869-1874. https://doi.org/10.1109/TPAMI.2006.225
- Lee, D.-W. and Lee, J. (2007), Domain Described Support Vector Classifier for Multi-Classification Problems, Pattern Recognition, 40, 41-51. https://doi.org/10.1016/j.patcog.2006.06.008
- Lee, D.-W. and Lee, J. (2007), Equilibrium-Based Support Vector Machine for Semi-Supervised Classification, IEEE Trans. on Neural Networks, 18, 578- 583. https://doi.org/10.1109/TNN.2006.889495
- Lee, D.-W., Jung, K.-H., and Lee, J. (2009), Constructing Sparse Kernel Machines Using Attractors, IEEE Trans. on Neural Networks, 20, 721-729. https://doi.org/10.1109/TNN.2009.2014059
- Lindstrom, M. J. (1999), Penalized Estimation of Free- Knot Splines, Journal of Computational and Graphical Statistics, 8, 333-352. https://doi.org/10.2307/1390640
- Parkinson, M. (1980), The Extreme Value Method for Estimating the Variance of the Rate of Return, Journal of Business, 53, 61-68. https://doi.org/10.1086/296071
- Rogers, L. and Satchell. S. (1991), Estimating Variance from High, Low and Closing Prices, Annals of Applied Probability, 1, 504-512. https://doi.org/10.1214/aoap/1177005835
- Rogers, L., Satchell, S., and Yoon, Y. (1994), Estimating the Volatility of Stock Prices: A Comparison of Methods that Use High and Low Prices, Applied Financial Economics, 4, 241-247. https://doi.org/10.1080/758526905
- Rubinstein, M. (1994), Implied Binomial Trees, Journal of Finance, 49, 771-818. https://doi.org/10.2307/2329207
- Späth, H. (1995), Two Dimensional Spline Interpolation Algorithms, A K Peters, Boston.
- Skiadopoulos G., Hodges, S., and Clewlow, L. (1999), The Dynamics of the S&P 500 Implied Volatility Surface, Review of Derivatives Research, 3, 263- 282.
- Waltz, R. A., Morales, J. L., Nocedal, J., and Orban, D. (2006), An Interior Algorithm for Nonlinear Optimization that Combines Line Search and Trust Region Steps, Mathematical Programming, 107, 391- 408. https://doi.org/10.1007/s10107-004-0560-5
Cited by
- Multi-basin particle swarm intelligence method for optimal calibration of parametric Levy models vol.39, pp.1, 2010, https://doi.org/10.1016/j.eswa.2011.07.039